Психология. Отношения. Личность. Общение
  • Главная
  • Клиническая
  • Оценка параметра называется состоятельной если. Несмещенные и эффективные оценки характеристики. Несмещенность и асимптотическая несмещенность

Оценка параметра называется состоятельной если. Несмещенные и эффективные оценки характеристики. Несмещенность и асимптотическая несмещенность

Распределение случайной величины (распределение генеральной совокупности) характеризуется обычно рядом числовых характеристик:

  • для нормального распределения N(a, σ) - это математическое ожидание a и среднее квадратическое отклонение σ ;
  • для равномерного распределения R(a,b) - это границы интервала , в котором наблюдаются значения этой случайной величины.
Такие числовые характеристики, как правило, неизвестные, называются параметрами генеральной совокупности . Оценка параметра - соответствующая числовая характеристика, рассчитанная по выборке. Оценки параметров генеральной совокупности делятся на два класса: точечные и интервальные .

Когда оценка определяется одним числом, она называется точечной оценкой . Точечная оценка, как функция от выборки, является случайной величиной и меняется от выборки к выборке при повторном эксперименте.
К точечным оценкам предъявляют требования, которым они должны удовлетворять, чтобы хоть в каком-то смысле быть «доброкачественными». Это несмещённость , эффективность и состоятельность .

Интервальные оценки определяются двумя числами – концами интервала, который накрывает оцениваемый параметр. В отличие от точечных оценок, которые не дают представления о том, как далеко от них может находиться оцениваемый параметр, интервальные оценки позволяют установить точность и надёжность оценок.

В качестве точечных оценок математического ожидания, дисперсии и среднего квадратического отклонения используют выборочные характеристики соответственно выборочное среднее, выборочная дисперсия и выборочное среднее квадратическое отклонение.

Свойство несмещенности оценки .
Желательным требованием к оценке является отсутствие систематической ошибки, т.е. при многократном использовании вместо параметра θ его оценки среднее значение ошибки приближения равно нулю - это свойство несмещенности оценки .

Определение . Оценка называется несмещенной , если ее математическое ожидание равно истинному значению оцениваемого параметра:

Выборочное среднее арифметическое является несмещенной оценкой математического ожидания, а выборочная дисперсия - смещенная оценка генеральной дисперсии D . Несмещенной оценкой генеральной дисперсии является оценка

Свойство состоятельности оценки .
Второе требование к оценке - ее состоятельность - означает улучшение оценки с увеличением объема выборки.

Определение . Оценка называется состоятельной , если она сходится по вероятности к оцениваемому параметру θ при n→∞.


Сходимость по вероятности означает, что при большом объеме выборки вероятность больших отклонений оценки от истинного значения мала.

Свойство эффективной оценки .
Третье требование позволяет выбрать лучшую оценку из нескольких оценок одного и того же параметра.

Определение . Несмещенная оценка является эффективной , если она имеет наименьшую среди всех несмещенных оценок дисперсию.

Это означает, что эффективная оценка обладает минимальным рассеиванием относительно истинного значения параметра. Заметим, что эффективная оценка существует не всегда, но из двух оценок обычно можно выбрать более эффективную, т.е. с меньшей дисперсией. Например, для неизвестного параметра a нормальной генеральной совокупности N(a,σ) в качестве несмещенной оценки можно взять и выборочное среднее арифметическое, и выборочную медиану. Но дисперсия выборочной медианы примерно в 1.6 раза больше, чем дисперсия среднего арифметического. Поэтому более эффективной оценкой является выборочное среднее арифметическое.

Пример №1 . Найдите несмещенную оценку дисперсии измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 13,15,17.
Решение. Таблица для расчета показателей.

x |x - x ср | (x - x ср) 2
13 2 4
15 0 0
17 2 4
45 4 8

Простая средняя арифметическая (несмещенная оценка математического ожидания)


Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего - смещенная оценка).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии (исправленная дисперсия).

Пример №2 . Найдите несмещенную оценку математического ожидания измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 4,5,8,9,11.
Решение. m = (4+5+8+9+11)/5 = 7.4

Пример №3 . Найдите исправленную дисперсию S 2 для выборки объема n=10, если выборочная диспресия равна D = 180.
Решение. S 2 = n*D/(n-1) = 10*180/(10-1) = 200

  • Пусть texvc не найден; См. math/README - справку по настройке.): X_1,\ldots, X_n,\ldots - выборка для распределения , зависящего от параметра Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \theta \in \Theta . Тогда оценка Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \hat{\theta} \equiv \hat{\theta}(X_1,\ldots,X_n) называется состоятельной, если
Невозможно разобрать выражение (Выполняемый файл texvc по вероятности при Невозможно разобрать выражение (Выполняемый файл texvc .

В противном случае оценка называется несостоятельной.

  • Оценка Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \hat{\theta} называется си́льно состоя́тельной , если
Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \hat{\theta} \to \theta,\quad \forall \theta\in \Theta почти наверное при Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): n \to \infty .

На практике «увидеть» сходимость «почти наверное» не представляется возможным, поскольку выборки конечны. Таким образом, для прикладной статистики достаточно требовать состоятельности оценки. Более того, оценки, которые были бы состоятельными, но не сильно состоятельными, «в жизни» встречаются очень редко. Закон больших чисел для одинаково распределённых и независимых величин с конечным первым моментом выполнен и в усиленном варианте, всякие крайние порядковые статистики тоже сходятся в силу монотонности не только по вероятности, но и почти наверное.

Признак

  • Если оценка сходится к истинному значению параметра "в среднем квадратичном" или если оценка асимптотически несмещенная и её дисперсия стремится к нулю, то такая оценка будет состоятельной.

Свойства

  • Из свойств сходимостей случайных величин имеем, что сильно состоятельная оценка всегда состоятельна. Обратное, вообще говоря, неверно.
  • Поскольку дисперсия состоятельных оценок стремится к нулю, часто со скоростью порядка 1/n, то состоятельные оценки сравниваются между собой асимптотической дисперсией случайной величины Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \sqrt {n} (\hat{\theta}-\theta) (асимптотическое математическое ожидание этой величины равно нулю).

Связанные понятия

  • Оценка называется суперсостоятельной , если дисперсия случайной величины Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): n (\hat{\theta}-\theta) стремится к конечной величине. То есть скорость сходимости оценки к истинному значению существенно выше чем у состоятельной оценки. Суперсостоятельными, например, оказываются оценки параметров регрессии коинтегрированных временных рядов.

Примеры

  • Выборочное среднее Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): \bar{X} = \frac{1}{n} \sum\limits_{i=1}^n X_i является сильно состоятельной оценкой математического ожидания Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): X_i .
  • Периодограмма является несмещённой , но несостоятельной оценкой спектральной плотности .

См. также

Напишите отзыв о статье "Состоятельная оценка"

Отрывок, характеризующий Состоятельная оценка

Искренний, глубоко-печальный рассказ Изидоры омертвил болью наши детские сердца, даже не давая время очнуться... Казалось, не было предела бесчеловечным мукам, причиняемым чёрствыми душами уродливых палачей этой удивительной и мужественной женщине!.. Мне было искренне боязно и тревожно, только лишь думая о том, что же ждало нас по окончании её потрясающего рассказа!..
Я посмотрела на Стеллу – моя воинственная подружка испуганно жалась к Анне, не сводя с Изидоры потрясённо- округлившихся глаз... Видимо, даже её – такую храбрую и не сдающуюся – ошеломила людская жестокость.
Да, наверняка, мы со Стеллой видели больше, чем другие дети в свои 5-10 лет. Мы уже знали, что такое потеря, знали, что означает боль... Но нам ещё предстояло очень многое пережить, чтобы понять хоть малую часть того, что чувствовала сейчас Изидора!.. И я лишь надеялась, что мне никогда не придётся такого на себе по-настоящему испытать...
Я зачарованно смотрела на эту прекрасную, смелую, удивительно одарённую женщину, не в силах скрыть навернувшихся на глаза горестных слёз... Как же «люди» смели зваться ЛЮДЬМИ, творя с ней такое?!. Как Земля вообще терпела такую преступную мерзость, разрешая топтать себя, не разверзнув при этом своих глубин?!.
Изидора всё ещё находилась от нас далеко, в своих глубоко-ранящих воспоминаниях, и мне честно совсем не хотелось, чтобы она продолжала рассказывать дальше... Её история терзала мою детскую душу, заставляя сто раз умирать от возмущения и боли. Я не была к этому готова. Не знала, как защититься от такого зверства... И казалось, если сейчас же не прекратится вся эта раздирающая сердце повесть – я просто умру, не дождавшись её конца. Это было слишком жестоко и не поддавалось моему нормальному детскому пониманию...
Но Изидора, как ни в чём не бывало, продолжала рассказывать дальше, и нам ничего не оставалось, как только окунутся с ней снова в её исковерканную, но такую высокую и чистую, не дожитую земную ЖИЗНЬ...
Проснулась я на следующее утро очень поздно. Видимо тот покой, что подарил мне своим прикосновением Север, согрел моё истерзанное сердце, позволяя чуточку расслабиться, чтобы новый день я могла встретить с гордо поднятой головой, что бы этот день мне ни принёс... Анна всё ещё не отвечала – видимо Караффа твёрдо решил не позволять нам общаться, пока я не сломаюсь, или пока у него не появится в этом какая-то большая нужда.
Изолированная от моей милой девочки, но, зная, что она находится рядом, я пыталась придумать разные-преразные способы общения с ней, хотя в душе прекрасно знала – ничего не удастся найти. Караффа имел свой надёжный план, который не собирался менять, согласуя с моим желанием. Скорее уж наоборот – чем больше мне хотелось увидеть Анну, тем дольше он собирался её держать взаперти, не разрешая встречу. Анна изменилась, став очень уверенной и сильной, что меня чуточку пугало, так как, зная её упёртый отцовский характер, я могла только представить, как далеко она могла в своём упорстве пойти... Мне так хотелось, чтобы она жила!.. Чтобы палач Караффы не посягал на её хрупкую, не успевшую даже полностью распуститься, жизнь!.. Чтобы у моей девочки всё ещё было только впереди...

Определение. Случайная величина называется оценкой неизвестного параметра , если значение этой случайной величины, найденное по результатам серии из измерений, может быть принято за приближенное значение этого параметра т.е. если справедливо равенство .

Пример. Если в качестве неизвестного параметра рассматривается вероятность наступления некоторого события , то оценкой этого параметра служит частость наступлений события в независимых испытаниях (см. статистическое определение вероятности и теорему Бернулли).

Пример. Пусть случайные величины имеют одинаковое математическое ожидание, т.е. . Тогда оценкой значения общего математического ожидания таких случайных величин служит среднее арифметическое этих случайных величин. Важным частным случаем рассмотренной ситуации является следующий

Пример . Оценкой некоторого параметра служит среднее арифметическое результатов независимых измерений этого параметра (см. теорему Чебышёва).

При непосредственном использовании приближенного равенства говорят о точечном оценивании неизвестного параметра.

Возможно также интервальное оценивание неизвестного параметра. Для того, чтобы объяснить, в чем оно состоит, введем в рассмотрение следующие понятия.

Определение. Для произвольного интервал называется доверительным интервалом ;сама величина называется в этом случае предельной ошибкой выборки .

Определение. Вероятность того, что неизвестное значение оцениваемого параметра накрывается доверительным интервалом, называется доверительной вероятностью.

Таким образом, если оценкапараметра , то

– доверительная вероятность (мы предполагаем, что оценка является непрерывной случайной величиной).

Интервальное оценивание состоит, например, в вычислении доверительной вероятности для заданной предельной ошибки выборки.

Решение задачи интервального оценивания связано с определением характера закона распределения используемой оценки .

Рассмотрим теперь некоторые свойства оценок.

Определение. Оценка параметра называется несмещенной , если математическое ожидание этой оценки равно оцениваемому параметру, т.е.

Определение. Оценка параметра называется состоятельной , если для произвольного выполняется следующее предельное соотношение

Другими словами, оценка параметра состоятельна, если эта оценка сходится по вероятности к данному параметру. (Напомним, что примеры сходимости такого рода дают теоремы Бернулли и Чебышёва, см. § 6.2.)

Определение. Несмещенная оценка некоторого параметра называется эффективной , если она обладает наименьшей дисперсией среди всех несмещенных оценок, найденных по выборке заданного объема.


Пример. Частость наступления некоторого события является несмещенной, состоятельной и эффективной оценкой вероятности этого события. Заметим, что свойства несмещенности и состоятельности частости были фактически рассмотрены нами ранее в несколько ином контексте. Действительно, несмещенность частости – равенство – является одним из свойств биномиально распределенной случайной величины (см. § 3.3). Состоятельность частости утверждается теоремой Бернулли (см. § 6.2).

Пример . Среднее арифметическое некоторого числа независимых и одинаково распределенных случайных величин является несмещенной и состоятельной оценкой общего математического ожидания этих случайных величин. Действительно, несмещенность – есть свойство 5 математического ожидания (см. § 3.3). Состоятельность утверждается теоремой Чебышёва (см. § 6.2).

  • Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятнос­тей (с доказательством).
  • Формулы полной вероятности и Байеса (с доказательством). Примеры.
  • Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
  • Локальная теорема Муавра-Лапласа, условия ее примени­мости. Свойства функции Дх). Пример.
  • Асимптотическая формула Пуассона и условия ее примени­мости. Пример.
  • Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
  • Следствия из интегральной теоремы Муавра-Лапласа (с вы­водом). Примеры.
  • Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
  • Дисперсия дискретной случайной величины и ее свойства (с вы­водом). Примеры.
  • Функция распределения случайной величины, ее определе­ние, свойства и график.
  • Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дис­персия нсв.
  • Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
  • Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.
  • Математическое ожидание и дисперсия числа и частости на­ступлений события в п повторных независимых испытаниях (с выводом).
  • Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
  • Функция распределения нормально распределенной случай­ной величины и ее выражение через функцию Лапласа.
  • Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интер­вал; б) ее отклонения от математического ожидания. Правило «трехсигм».
  • Понятие двумерной (/7-мерной) случайной величины. При­меры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таб­лице распределения.
  • Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случай­ных величин.
  • Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
  • Неравенство Маркова (лемма Чебышева) (с выводом). При­мер.
  • Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному за­кону, и для частости события.
  • Теорема Чебышева (с доказательством), ее значение и след­ствие. Пример.
  • Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
  • Неравенство Чебышева для средней арифметической случай­ных величин (с выводом).
  • Центральная предельная теорема. Понятие о теореме Ляпу­нова и ее значение. Пример.
  • Вариационный ряд, его разновидности. Средняя арифмети­ческая и дисперсия ряда. Упрощенный способ их расчета.
  • Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
  • Оценка генеральной доли по собственно-случайной выбор­ке. Несмещенность и состоятельность выборочной доли.
  • Оценка генеральной средней по собственно-случайной вы­борке. Несмещенность и состоятельность выборочной средней.
  • Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
  • Понятие об интервальном оценивании. Доверительная ве­роятность и доверительный интервал. Предельная ошибка выбор­ки. Ошибки репрезентативности выборки (случайные и систематические).
  • Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бес­повторной выборок и построение доверительного интервала для генеральной средней.
  • Определение необходимого объема повторной и бесповтор­ной выборок при оценке генеральной средней и доли.
  • Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
  • Построение теоретического закона распределения по опыт­ным данным. Понятие о критериях согласия.
  • Критерий согласия х2-Пирсона и схема его применения.
  • Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
  • Линейная парная регрессия. Система нормальных уравне­ний для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
  • Упрощенный способ:
  • Оценка тесноты связи. Коэффициент корреляции (выбороч­ный), его свойства и оценка достоверности.
    1. Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.

    Сформулируем задачу оценки параметров в общем виде . Пусть распределение признака Х - генеральной совокупности - задается функцией вер-тей (для дискретной СВ Х) или плотностью вер-ти
    (для непрерывной СВ Х), к-ая содержит неизвестный параметр. Напр, это параметр λ в распределении Пуассона или параметры а и
    для нормального закона распределения и т.д.

    Для вычисления параметра исследовать все элементы генеральной совокупности не представляется возможным. Поэтому о параметрепытаются судить по выборке, состоящей из значений (вариантов)
    . Эти значения можно рассматривать как частные значения (реализации) n независимых случайных величин
    каждая из к-ых имеет тот же закон распределения, что и сама СВ Х.

    Определение . Оценкой параметраназывают всякую функцию результатов наблюдений над СВ Х (иначе - статистику), с помощью к-ой судят о значении параметра:

    .

    Поскольку
    - случайные величины, то и оценка(в отличие от оцениваемого параметра- величины неслучайной, детерминированной) является случайной величиной, зависящей от закона распределения СВ Х и числа n.

    О качестве оценки следует судить не по индивидуальным ее значениям, а лишь по распределению ее значений в большой сети испытаний, т.е. по выборочному распределению оценки.

    Если значения оценки концентрируются около истинного значения параметра, т.е. основная часть массы выборочного распределения оценки сосредоточена в малой окрестности оцениваемого параметра, то с большой вер-тью можно считать, что оценкаотличается от параметралишь на малую величину. Поэтому, чтобы значениебыло близко к, надо, очевидно, потребовать, чтобы рассеяние случайной величиныотносительно, выражаемое, например, матем-ким ожиданием квадрата отклонения оценки от оцениваемого параметра
    , было по возможности меньшим. Таково основное условие, к-му должна удовлетворять «наилучшая» оценка.

    Свойства оценок.

    Определение . Оценка параметраназываетсянесмещенной , если ее мат-кое ожидание равно оцениваемому параметру, т.е.
    .

    в противном случае оценка называется смещенной .

    Если это равенство не выполняется, то оценка , полученная по разным выборкам, будет в среднем либо завышать значение(если
    , либо занижать его (если
    ). Требование несмещенности гарантирует отсутствие систематических ошибок при оценивании.

    Если при конечном объеме выборки n
    , т.е. смещение оценки
    , но
    , то такая оценканазываетсяасимптотически несмещенной .

    Определение . Оценка параметраназываетсясостоятельной , если она удовлетворяет закону больших чисел, т.е. сходится по вер-ти к оцениваемому параметру:

    , или .

    В случае использования состоятельных оценок оправдывается увеличение объема выборки, т.к. при этом становятся маловероятными значительные ошибки при оценивании. Поэтому практический смысл имеют только состоятельные оценки. Если оценка состоятельна, то практически достоверно, что при достаточно большом n
    .

    Если оценка параметраявляется несмещенной, а ее дисперсия
    при n → ∞, то оценкаявляется и состоятельной. Это непосредственно вытекает из неравенства Чебышева:

    .

    Определение . Несмещенная оценка параметра сназываетсяэффективной , если она имеет наименьшую дисперсию среди всех возможных несмещенных оценок параметра , вычисленных по выборкам одного и того же объема n.

    Т.к. для не смещенной оценки
    есть ее дисперсия, то эф-ть являетсярешающим свойством , определяющим качество оценки.

    Эффективность оценки определяют отношением: .

    где и - соот-но дисперсии эффективной и данной оценок. Чем ближе е к 1, тем эффективнее оценка. Если е → 1 при n → ∞, то такая оценка называется асuмптотически эффективной.

    "

    Тема 7. Статистические оценки параметров распределения: точечные и интервальные оценки

    Смысл статистических методов заключается в том, чтобы по выборке ограниченного объема, то есть по некоторой части генеральной совокупности, высказать обоснованное суждение о ее свойствах целиком.

    Естественно, что замена исследования генеральной совокупно­сти исследованием выборки порождает ряд вопросов:

    1. В какой степени выборка отражает свойства генеральной совокупности, т. е. в какой степени выборка репрезентативна по отношению к генеральной совокупности?

    2. Какую информацию о значениях параметров генеральной совокупности могут дать параметры выборки?

    3. Можно ли утверждать, что полученные выборочным путем статистические характеристики (средние величины, дисперсия или любые другие производные величины) равны тем характе­ристикам, которые могут быть получены из генеральной сово­купности.

    Проверка показывает, что значения параметров, полученных для разных выборок из одной генеральной совокупности, обыч­но не совпадают. Рассчитанные выборочным путем числовые значения параметров выборок являются лишь результатом при­ближенного статистического оценивания значений этих парамет­ров в генеральной совокупности. Статистическое оценивание, в силу изменчивости наблюдаемых явлений, позволяет получать только их приближенные значения.

    Примечание. Строго говоря, в статистике оценка - это правило вычисления оцениваемого параметра, а термин оценить, т. е. провести оценивание, означает указать приближенное значе­ние.

    Различают оценки точечные и оценки интервальные .

    Точечная оценка параметров распределения

    Пусть x 1 , x 2 , …, x n – выборка объема n из генеральной совокупности с функцией распределения F (x ).

    Числовые характеристики этой выборки называются выборочными (эмпирическими ) числовыми характеристиками.

    Отметим, что выборочные числовые характеристики являются характеристиками данной выборки, но не являются характеристиками распределения генеральной совокупности. Однако эти характеристики можно использовать для оценок параметров генеральной совокупности.

    Точечной называют статистическую оценку, которая определяется одним числом.

    Точечная оценка характеризуется свойствами: несмещенность, состоятельность и эффективность.

    Несмещенной называют точечную оценку, математическое ожидание которой равно оцениваемому параметру при любом объеме выборки.

    Точечная оценка называется состоятельной , если при неограниченном увеличении объема выборки (n ® ¥) она сходится по вероятности к истинному значению параметра, то есть стремится к истинному значению оцениваемого параметра генеральной совокупности.

    Эффективной называют точечную оценку, которая (при заданном объеме выборки n ) имеет наименьшую возможную дисперсию, те есть гарантирует наименьшее отклонение выборочной оценки от такой же оценки генеральной совокупности..

    В математической статистике показывается, что состоятельной, несмещенной оценкой генерального среднего значения а является выборочное средне:

    где х i – варианта выборки, n i – частота варианты х i , – объем выборки.

    Несмещенной оценкой генеральной дисперсии служит исправления выборочная дисперсия

    ,

    Более удобна формула  .

    Оценка s 2 для генеральной дисперсии является также и состоятельной, но не является эффективной. Однако в случае нормального распределения она является «асимптотически эффективной», то есть при увеличении n отношение ее дисперсии к минимально возможной неограниченно приближается к единице.

    Итак, если дана выборка из распределения F (x ) случайной величины Х с неизвестным математическим ожиданием а и дисперсией s 2 , то для вычисления значений этих параметров мы имеем право пользоваться следующими приближенными формулами:

    Точечные оценки имеют тот недостаток, что при малом объеме выборки могут значительно отличаться от оцениваемых параметров. Поэтому, чтобы получить представление о близости между параметром и его оценкой, в математической статистике вводятся, так называемые, интервальные оценки.

    Доверительный интервал

    Если при статистической обработке результатов требуется найти не только точечную оценку неизвестного параметра θ, но и охарактеризовать точность этой оценки, то находится доверительный интервал.

    Доверительный интервал – это интервал, в котором заранее заданной доверительной вероятностью находится неизвестный параметр генеральной совокупности.

    Доверительная вероятность – это вероятность, с которой неизвестный параметр генеральной совокупности принадлежит доверительному интервалу.

    Длина доверительного интервала характеризует точность интервального оценивания и зависит от объема выборки и доверительной вероятности. При увеличении объема выборки длина доверит. интервала уменьшается (точность увеличивается), а при стремлении доверительной вероятности к 1 длина доверит. интервала увеличивается (точность уменьшается) Наряду с доверительной вероятностью р часто на практике используют уровень значимости α = 1 - p.

    Обычно принимают р = 0,95 или (реже) 0,99. Эти вероятности признаны достаточными для уверенного суждения о генеральных параметрах на основании известных выборочных показателей.

    Доверительный интервал для математического ожидания имеет вид: где S – СКО, - критическое значение распределения Стьюдента (Смотри ПРИЛОЖЕНИЕ 1 к Теме 7)

    Лучшие статьи по теме