Психология. Отношения. Личность. Общение
  • Главная
  • Клиническая
  • Разработка и изготовление трансгенных продуктов. Трансгенная пища. Методы создания трасгенных продуктов

Разработка и изготовление трансгенных продуктов. Трансгенная пища. Методы создания трасгенных продуктов


В книге братьев Стругацких «Полдень. CCII век» люди будущего не имеют недостатка в продуктах питания. А решилась проблема голода благодаря торжеству генетики. В созданном фантазией писателей будущем с помощью трансгенных технологий создается множество новых замечательных продуктов питания. В лаборатории по производству мяса, например, можно попробовать «мясо, которое не требует специй, мясо, которое не нужно солить, мясо, которое тает во рту, как мороженое, спецмясо для космонавтов и ядерных техников, спецмясо для будущих матерей и даже мясо, которое можно есть сырым». В новой партии коров, выращенных для мясной отрасли, можно было увидеть странное животное «по виду и, главное, по вкусу больше всего напоминающее тихоокеанского краба».

Покупая в магазине какой-либо продукт, на упаковке можно иногда прочитать: «генетически модифицированные продукты» или «содержат компоненты, полученные из генетически модифицированных источников». Число ГМ - продуктов в российских магазинах уже сейчас достаточно велико. Так, в результате акции, проведенной «Гринпис» в конце января 2004 г. в Москве, ГМ - источники были выявлены в 16 из 39 исследованных продуктах питания, продававшихся в московских магазинах.

Что же скрывается за непонятными для рядового покупателя названием «генетически модифицированные» или «трансгенные» продукты?

Это растения, в ДНК которых введен ген, не данный им природой, ген из другого организма. Он наделяет своего «хозяина» новыми свойствами: высокая урожайность, пищевая и вкусовая ценность, устойчивость к болезням, пестицидам, выносливость и др.

Сегодня идет лишь первый этап развития биотехнологии - создание ГМ - растений с улучшенными агрономическими свойствами. Это позволяет почти полностью отказаться от химических средств защиты и удобрений.

Следующий этап - получение продуктов с улучшенной пищевой ценностью: фрукты и овощи с увеличенным содержанием витаминов, более питательные зерновые, «золотой рис» (содержащий b-каротин, особенно полезный людям с дефицитом витамина А, например в Юго-восточной Азии, где рис- основная пища).

Еще более актуальный этап - создание растений лекарств, растений-вакцин. Например, в растение вводят тот или иной вирус, и употребление этого растения позволяет человеку постепенно приобрести иммунитет к этому вирусу. Уже сейчас японские генетики создали сорт риса, который позволяет больным сахарным диабетом обходиться без лекарств: ГМ - рис стимулирует производство поджелудочной железой собственного инсулина.

Пока нет однозначных научных доказательств вреда или пользы ГМ-продуктов. В лабораторных условиях ход событий спрогнозировать невозможно: мировая наука еще не создала технологий, с помощью которых можно было бы оценить безопасность генетически модифицированных организмов с учетом фактора времени. Некоторые ученые, например, считают, что трансгены способны изменять обмен веществ и могут образовывать токсические вещества.

Генетически измененные продукты могут стать причиной массы проблем для настоящего и последующего поколений, больше всего от них могут пострадать дети, пожилые люди и люди с ослабленным иммунитетом.

Приведенные ниже факты свидетельствуют об опасности генной инженерии.

· Генная инженерия в корне отличается от выведения новых сортов и пород. Искусственное добавление чужеродных генов сильно нарушает четко отрегулированный генетический контроль нормальной клетки. Манипулирование генами коренным образом отличается от комбинирования материнских и отцовских хромосом, которое происходит при естественном скрещивании.

· В настоящее время генная инженерия технически не совершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому не возможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень не полны для того, чтобы предсказать результаты.

· В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. В худшем случае это могут быть токсические вещества, аллергены или другие вредные для здоровья вещества. Сведения о такого рода возможностях ёще очень не полны.

· Не существует совершенно надежных методов проверки на безвредность. Более 10 % серьезных побочных эффектов новых лекарств и возможно выявить, несмотря на тщательно проводимые исследования на безвредность. Степень риска того, что опасные свойства новых, модифицированных с помощью генной инженерии продуктов питания, останутся незаменимыми, вероятно, значительно больше, чем в случае лекарств.

· Существующие в настоящее время требования по проверке на безвредность, крайне недостаточны. Они совершенно явно составлены таким образом, чтобы упростить процедуру утверждения. Они позволяют использовать крайне не чувствительные методы проверки на безвредность. Поэтому существует значительный риск того, что опасные для здоровья продукты питания смогут пройти проверку незаметно.

· Знания о действии на окружающую среду модифицированных с помощью генной инженерии организмов, привнесенных туда, совершенно недостаточны. Экологами высказаны предположения о различных потенциальных экологических осложнениях. Например, имеется много возможностей для неконтролируемого распространения потенциально опасных генов, используемых генной инженерией, в том числе передача генов бактериям и вирусам. Осложнения, вызванные в окружающей среде, вероятно, невозможно будет исправить, так как выпущенные гены невозможно взять обратно.

· Могут возникнуть новые опасные вирусы. Экспериментально показано, что встроенные в геном вирусы могут соединяться с генами инфекционных вирусов (так называемая рекомбинация), такие новые вирусы могут быть более агрессивными, чем исходные. Вирусы так же могут стать менее видоспецифичными. Например, вирусы растений могут стать вредными для полезных насекомых, животных, а также людей.

· Знания о наследственном веществе, ДНК, очень не полны. Рискованно манипулировать сложными системами, знания о которых не полны. Обширный опыт в области биологии, экологии и медицины показывает, что это может вызвать серьезные непредсказуемые проблемы и расстройства.

· Генная инженерия не поможет решить проблему голода в мире. Утверждение, что генная инженерия может внести существенный вклад в решение проблемы голода в мире, является научно необоснованным мифом.

В конце февраля 2000 года в Картахене (Колумбия) собрались министры экологии и эксперты 137 стран. Предполагалось, что они согласуют и подпишут протокол о мерах по обеспечению биобезопасности. Однако на конференции вспыхнули споры между странами-производителями и импортерами сельскохозяйственной продукции. Первые (США, Австралия, Австрия, Канада, Чили, Уругвай) выступали за свободный доступ ГМ-продуктов на мировой рынок. Вторые (по числу их было значительно больше) упорно настаивали на необходимости тщательного изучения возможных негативных последствий от использования продуктов и живых организмов, при селекции и выращивании которых были применены генные технологии. От этого, утверждали они, возможно, зависит не только здоровье человека, но и сохранении биосферы планеты. В итоге конференция ограничилась решением продолжить консультации. Позже, государства все-таки пришли к общему мнению и 11 сентября 2003 года, протокол вступил в силу и был подписан 50 странами. 13 февраля 2004 года, 86 стран мира и ЕЭС ратифицировал протокол.

Европейские производители обязаны вносить на упаковку информацию об использовании ГМ-технологий, если доля трансгенных ингредиентов в продукте составляет от 0,9%. а в России, где не разрешено производить ГМ-продукты, но зато их можно ввозить, необходимо маркировать продукцию, если в ней содержится 5% трансгенных ингредиентов.

В целях реализации прав потребителей на получение полной и достоверной информации о технологии производства пищевых продуктов, полученных из генетически модифицированных источников (ГМИ), и гармонизации требований по маркировке пищевых продуктов, полученных из ГМИ, с требованиями ЕС Главным санитарным врачом РФ утверждены санитарные правила СанПиН 2.3.2.1842-04 «Дополнения и изменения № 3к СанПиН 2.3.2.1078-01», которые устанавливают в Российской Федерации пороговый уровень для маркировки пищевых продуктов, полученных из ГМИ, на уровне 0,9%.

В соответствии с Федеральным законом «О санитарно-эпидемиологическом благополучии», № 52-ФЗ, ст. 32, Федеральным законом «О качестве и безопасности пищевых продуктов» № 29-ФЗ, ст.22, СП 1.1.1058-01 «Организация и проведение производственного контроля за соблюдением санитарных правил и выполнением санитарно-эпидемиологических (профилактических) мероприятий» юридические лица и индивидуальные предприниматели, занятые в производстве и обороте пищевых продуктов, обязаны осуществлять производственный контроль, в том числе за продуктами, содержащими генетически модифицированные компоненты.

Специалисты центров Госсанэпиднадзора в субъектах РФ проводят мониторинг за производством и оборотом пищевых продуктов, содержащих ГМИ, на основании экспертизы сопроводительной документации и образцов поступающей на рынок продукции, при текущей проверке предприятий пищевой промышленности, организаций оптовой и розничной торговли.

В настоящее время проверкой продуктов на наличие ГМ-компонентов занимаются региональные центры Госсанэпиднадзора, в частности в Москве, Санкт-Петербурге, Нижнем Новгороде, Брянске, Ростове, Твери, Липецке, Перми.

По данным мониторинга, проводимого Госсанэпидслужбой России, в настоящее время производители часто используют ГМ продовольственное сырьё в рецептурах в количестве менее 5%, а удельный вес пищевых продуктов, содержащих ГМИ более 1%, составляет более 80%.



Трансгенными могут называться те виды растений, в которых успешно функционирует ген (или гены) пересаженные из других видов растений или животных. Делается это для того, чтобы растение реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генноизмененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться. Также часто такие растения дают более богатый и стабильный урожай, чем их природные аналоги.

Генетически измененный продукт - это когда выделенный в лаборатории ген одного организма пересаживается в клетку другого. Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи; чтобы скот быстрее набирал вес, ему вкалывают измененный гормон роста (но при этом молоко наполняется гормонами, вызывающими рак); чтобы соя не боялась гербицидов, в нее внедряют гены петунии, а также некоторых бактерий и вирусов. Соя - один из основных компонентов многих кормов для скота и почти 60% продуктов питания. В Казахстане, как и во многих странах Европы, генетически измененные сельхозкультуры (в мире их создано больше 30-ти видов) пока не распространяются такими бешеными темпами, как в США, где официально закреплена идентичность "натуральных" и "трансгенных" продуктов питания.

На данный момент в России и в Казахстане зарегистрировано множество видов продуктов из модифицированной сои, среди которых: фитосыр, смеси функциональные, сухие заменители молока, мороженое "Сойка-1", 32 наименования концентратов соевого белка, 7 видов соевой муки, модифицированные бобы сои, 8 видов соевых белковых продуктов, 4 наименования соевых питательных напитков, крупка соевая обезжиренная, комплексные пищевые добавки в ассортименте и специальные продукты для спортсменов, тоже в немалом количестве. В России Департамент государственного санитарно-эпидемиологического надзора выдал
"сертификаты качества" одному сорту картофеля и двум сортам - кукурузы.

Получение трансгенных растений является на данный момент одной из перспективных и наиболее развивающихся направлений агропроизводства.
Существуют проблемы, которые не могут быть решены такими традиционными направлениями как селекция, кроме того, что на подобные разработки требуются годы, а иногда и десятилетия. Создание трансгенных растений, обладающих нужными свойствами, требует гораздо меньшего времени и позволяет получать растения с заданными хозяйственно ценными признаками, а также обладающих свойствами, не имеющими аналогов в природе. Примером последнего могут служить полученные методами генной инженерии сорта растений, обладающих повышенной устойчивостью к засухе.


Создание трансгенных растений в настоящее время развиваются по следующим направлениям:

1. Получение сортов с/х культур с более высокой урожайностью

2. Получение с/х культур, дающих несколько урожаев в год (например, в
России существуют ремантантные сорта клубники, дающие два урожая за лето)

3. Создание сортов с/х культур, токсичных для некоторых видов вредителей (например, в России ведутся разработки, направленные на получение сортов картофеля, листья которого являются остро токсичными для колорадского жука и его личинок)

4. Создание сортов с/х культур, устойчивых к неблагоприятным климатическим условиям (например, были получены устойчивые к засухе трансгенные растения, имеющие в своем геноме ген скорпиона)

5. Создание сортов растений, способных синтезировать некоторые белки животного происхождения (например, в Китае получен сорт табака синтезирующий лактоферрин человека)

Таким образом, создание трансгенных растений позволяет решить целый комплекс проблем, как агротехнических и продовольственных, так и технологических, фармакологических и т.д. Кроме того, уходят в небытие пестициды и другие виды ядохимикатов, которые нарушали естественный баланс в локальных экосистемах и наносили невосполнимый ущерб окружающей среде.

Острой государственной продовольственной и социальной проблемой в России в XXI веке станет массовое внедрение в сельскохозяйственное производство и пищевую промышленность трансгенных организмов и трансгенных продуктов. В ближайшие 10 лет это будут трансгенные растения основных злаковых культур, сои и картофеля. В пищевую промышленность будут во все возрастающих количествах поступать трансгенные белки, растительное масло, крахмал, патока, пищевые волокна и пектин. Уже в 2002-2003 гг. в Россию ввозилось, в т.ч. и через теневой бизнес, по оценкам разных экспертов, от 250 до 500 тыс. тонн трансгенного соевого белка, от 60 до 100 тыс. тонн трансгенного соевого и рапсового масла, кукурузного крахмала.

Мировым лидером в создании и продвижении на рынок трансгенных культур (ТК) и пищевых продуктов и кормов является американская корпорация «Монсанто». Она же - мировой лидер в производстве и внедрении в сельское хозяйство наиболее продаваемых гербицидов: Раундапа и Раундапа-био. Фирмой созданы трансгенные устойчивые к этим гербицидам пищевые культуры соя, кукуруза, рис, пшеница, ячмень, сахарная свекла, картофель. Фирма является также разработчиком технологий возделывания ТК с использованием этих гербицидов. Круг замыкается. В настоящее время 80 % рынка сельскохозяйственных химических пестицидов контролирует 5 компаний и они же мировые лидеры в создании и внедрении в производство ТК, устойчивых к производимым ими пестицидам.

Можно предполагать, что их задача: жестко определяемая глобализация мирового производства растениеводческой продукции с помощью широкомасштабного внедрения десятка стандартных сортов ТК и продуктов их переработки. Это будет реальностью, если учесть, что сейчас обычные сорта этих культур дают 80-85% пищевого рациона жителей земли. Их разнообразие исчисляется тысячами сортов, учитывающих почвенно-климатические условия выращивания и национальные требования к качеству растениеводческой продукции.

В экономически развитых странах государство не допускает зависимости благосостояния сельхозпроизводителя от коммерческих интересов генно-инженерных фирм. Государство гарантирует, путем правил маркировки продукции, потребителю право выбора обычных или трансгенных продуктов. Законодательно в действительности регулируется возделывание ТК и реализация трансгенных продуктов. Надежно действует стандартная система контроля реализуемых трансгенных продуктов или содержания их компонентов в пищевых продуктах.

В развивающихся странах, в т.ч. и в России, возможные последствия массового внедрения ТК и трансгенных продуктов могут быть резко негативными, поскольку в этих странах сельское хозяйство находится пока в кризисном состоянии.

В настоящее время возделывание ТК не имеет экономических преимуществ перед обычными современными технологиями возделывания традиционных сортов. Пищевые продукты и корма, полученные из ТК, по диетологическим показателям и вкусовым качествам ни в чем не превосходят обычные пищевые продукты и корма. Причем, качество последних легче и надежнее контролировать, чем трансгенные. Так, в России толь ко в мае приняты национальные стандарты методов идентификации генетически модифицированных продуктов и кормов и оценки их биологической безопасности. Маркируются на содержание генно-модифицированных компонентов пока единичные виды пищевых продуктов.

Экономическая целесообразность и экологическая безопасность промышленного возделывания ТК в Казахстане будет зависеть от государственной стратегии развития агротехнологий их выращивания. Пока такая стратегия не разработана, необходимо определить наиболее опасные агроэкологические, генетические, фитосанитарные и социальные последствия производственных посевов ТК и пищевого использования их урожая. Следует учитывать, что у потребителя нет нужды именно в трансгенных продуктах питания, т.к. ни одна ТК не дает больший урожай и выход пищевой продукции, чем обычные культуры.

Эволюционная судьба ТК непредсказуема. Возделывание гербицидоустойчивых ТК, при существующем в стране низком уровне технологичности защиты растений, приведет к увеличению объемов вносимых в агроценозы гербицидов. Это может вызывать появление гербицидоустойчивых сорняков (их уже известно более 500 экотипов) и сорняков с комплексной устойчивостью к нескольким гербицидам, что приведет к очередному увеличению доз вносимых гербицидов. Уменьшение биоразнообразия существующих чувствительных к гербицидам сорняков вызовет изменение характера экологического взаимодействия связанных с ними других видов биоты. Так, на гербицидоустойчивых сорняках обитают виды токсино-генных грибов, которые при переходе на культурные растения оказываются более патогенными, чем ранее обнаруженные на обычных сорняках.

Неизвестны изменения биологической полноценности урожая гербицидоустойчивых ТК. Однако, в геноме возделываемой ряд лет гербицидоустойчивой трансгенной сои обнаружены спонтанно появляющиеся вставки ДНК, биохимическая роль которых неизвестна. Важно отметить, что ТК - это, фактически, мутанты. А среди всех современных наиболее продуктивных сортов сельскохозяйственных культур в мире нет сортов, полученных с помощью искусственно вызванных мутаций, хотя попытки получения таких сортов постоянно предпринимаются.

Вторыми по распространенности в посевах выступают ТК, устойчивые к некоторым вредителям за счет внедрения в их геном гена, определяющего выработку бактериального токсина, убивающего некоторые виды вредителей. Эти культуры убивают менее 85% целевых вредителей. У выжившей части популяции формируются расы, устойчивые к токсину. Устойчивые к вредителям ТК убивают ряд видов полезных насекомых.

Трансгенная устойчивость к гербицидам и вредителям сопровождается увеличением токсичности тканей ТК. Это способствует повышению вредоносности заражающих такие растения возбудителей болезней.

При общепланетарных посевах ТК человечество столкнется с принципиально новыми формами эпифитотий и эпизоотии, нашествий вредителей. Болезни будут другие.

Любые ТК не снижают темпов генетической изменчивости возбудителей болезней и вредителей, а следовательно, бесперспективны в плане стабилизации фитосанитарной обстановки в агроценозах. Фитосанитарные проблемы воздействия ТК не сформулированы ни в одной стране мира, возделывающей их.

Реальную опасность ТК представляют для продуктивных биоценозов. Они будут быстро сокращать биоразнообразие всех культурных и сопутствующих им диких полезных растений. Например, по подсчетам ученых биологов США, через 50 лет в стране не останется ни одного растительного организма, не несущего в своем геноме генно-модифицированную вставку. Эволюция такой биоты непредсказуема. Нельзя забывать, что трансгенные организмы являются побочным продуктом военных технологий создания биологического оружия и могут им быть.

Масштабное возделывание и переработка ТК резко ограничивают развитие органического земледелия и получения биологически полноценной и безопасной пищи. По требованиям стран ЕС, экологически чистая продукция не должна содержать компонентов, полученных из генно-модифицированных источников.

В настоящее время более 75% всех импортируемых в Россию продуктов содержат компоненты из генно-модифицированных источников. Трансгенные белки сои постоянно возрастающими темпами заменяют в продуктах питания биологически полноценные животные белки и растительные белки традиционных культур. Важно, что современные регламенты производства любых продуктов питания не ограничивают содержание в них трансгенных растительных белков, а только требуют их маркировки. Учитывая, что замена трансгенным соевым белком белков животных - сверхвыгодный бизнес, и без того весьма скудных по биологической полноценности, рацион не менее 100 млн. россиян станет на 60-70% еще хуже. Это обострит и без того весьма неблагополучное положение со здоровьем большей части населения России, особенно молодежи. Сейчас средний россиянин съедает в год 32 кг натурального мяса и рыбы, что на 40% меньше медицинской нормы. При продолжающейся замене животных белков соевыми он в 2006-2007 годах уже будет съедать только 20-25 кг животных белков.

Первым искусственно изменённым продуктом стал помидор. Его новым свойством стала способность месяцами лежать в недоспелом виде при температуре 12 градусов. Но как только такой помидор помещают в тепло, он за несколько часов становится спелым.

Американские компании Origen Therapeutics и Embrex планируют наладить массовое производство клонированных цыплят. Смысл всей затеи очевиден: тиражирование одной единственной жирной птички, которая мало ест, быстро растет и не болеет, представляется делом необыкновенно выгодным.
Исследования, которые проводятся при поддержке Национального института науки и технологий, выделившего на проект 4,7 миллиона долларов, уже дали конкретные результаты. Технология клонирования в своем обычном виде, предполагающая перенос ядра клетки-донора в яйцеклетку с последующей ее имплантацией суррогатной матери, к птицам неприменима, поскольку, как известно, их эмбрионы развиваются не в матке, а в скорлупе. Генетические копии цыплят создаются иным образом. Ученые выделяют и размножают эмбриональные стволовые клетки донора, из которых с ростом эмбриона развиваются все ткани. Затем эти клетки имплантируются в обычное яйцо.

Строго говоря, получающийся таким образом цыпленок является не генетической копией, а "химерой", поскольку вместе с донорскими клетками содержит и родные, те, что были в яйце. Однако ученые добились, чтобы донорских клеток было более 95 %, и даже создали 100-процентного клона. Для массового производства таких цыплят планируется использовать специальные машины, способные за час ввести инъекции в 50 тысяч яиц.

Американцы добились изменения клубники, тюльпанов. Вывели сорт картофеля, который при жарке впитывает меньше жира. Они же скоро планируют получить помидоры-гиганты кубической формы, чтобы их было легче упаковывать в ящики. Швейцарцы начали выращивать кукурузу, которая выделяет собственный яд против вредителей.

Был создан "помидор с жабрами" - помидор, в который для увеличения морозоустойчивости вживили ген североамериканской плоской рыбы. Кстати, именно этот гибрид овоща и рыбы получил кличку "завтрак Франкенштейна".

В Московском институте картофелеводства выводится картофель с человеческим интерфероном крови, который повышает иммунитет. А в Институте животноводства получен патент на овцу, у которой в молоке присутствует сычужный фермент, необходимый для производства сыра. Специалисты утверждают, что при новой технологии производства сыра, достаточно будет всего 200 овец, чтобы обеспечить сыром всю Россию.

Сегодня ученые работают над созданием "умных растений", которые могут посылать фермерам сигнал SOS, светиться, когда им не хватает воды или при первых признаках заболевания. Полным ходом идут работы по созданию пластмассы, которая бы разрушалась, попадая в окружающую среду - в масличные культуры вводят гены бактерий, позволяющие выращивать эту биоразлагаемую пластмассу прямо на полях. Недавно американцы заявили, что им удалось добавить в генную структуру обычного хлопка гены растений, цветущих голубым цветом. Появилась реальная возможность революционизировать рынок джинсовой ткани - красильное производство прекратит сброс в окружающую среду ядовитых сточных вод. Эта технология будет запущена в производство в 2005 году.

Эксперименты ведутся и в другой области - области запахов. Некоторые не любят запах роз, считая его слишком приторным, - для таких людей можно выращивать розы, благоухающие лимоном. Можно даже вырастить розу, издающую аромат духов Кельвина Клайна - манипуляции с генами, отвечающими за запах, позволяют вывести растения с любым ароматом.

На сегодняшний день существует несколько сотен генетически изменённых продуктов. Уже на протяжении нескольких лет их употребляют миллионы людей в большинстве стран мира. Есть данные, что подобными технологиями пользуются для получения продуктов, реализуемых через сеть McDonalds. Многие крупные концерны, типа Unilever, Nestle, Danon и другие используют для производства своих товаров генно-инженерные продукты и экспортируют их во многие страны мира. Но во многих странах такие продукты обязательно должны содержать на упаковке надпись "Сделано из генетически модифицированного продукта". Некоторые считают, что, внося изменения в генный код растения или животного, учёные делают то же самое, что и сама природа. Абсолютно все живые организмы от бактерии до человека - это результат мутаций и естественного отбора.

Пример. Какое-либо растение выбросило несколько тысяч семян, и они проросли. Среди тысяч появившихся ростков некоторые обязательно будут отличаться от родителя, то есть фактически окажутся мутантами. Если изменения вредны для растения, то оно погибнет, а если полезны, то оно даст более приспособленное и совершенное потомство, и так может образоваться новый вид растения. Но если природе для образования новых видов требуется много сто- или тысячелетий, то учёные производят этот процесс за несколько лет. Какой-то принципиальной же разницы нет.
Самые распространенные - соя, кукуруза, масличный рапс и хлопок. В некоторых странах для выращивания одобрены трансгенные помидоры, рис, кабачки. Эксперименты проводятся на подсолнечнике, сахарной свекле, табаке, винограде, деревьях и т. д. В тех странах, где пока нет разрешения на выращивание трансгенов, проводятся полевые испытания.
Чаще всего культурные растения наделяют устойчивостью к гербицидам, насекомым или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. В результате поле очищается от всех лишних растений, то есть сорняков, а культуры, устойчивые или толерантные (терпимые) к гербицидам, выживают. Чаще всего компания, продающая семена подобных растений, предлагает в наборе и соответствующие гербициды. Устойчивая к насекомым флора становится поистине бесстрашной: например, непобедимый колорадский жук, съедая листик картофеля, погибает. Почти все такие растения содержат встроенный ген природного токсина - земляной бактерии Bacillus thuringiensis. Устойчивость к вирусу растение приобретает благодаря встроенному гену, взятому из этого же самого вируса.
Под натиском общественности и организаций потребителей, которые хотят знать, что они едят, в некоторых странах введен мораторий на ввоз таких продуктов (Австрия, Франция, Греция, Великобритания, Люксембург). В других принято жесткое требование маркировать генетически измененное продовольствие.Австрия и Люксембург запретили производство генных мутантов, а греческие фермеры под черными знаменами и с плакатами в руках ворвались на поля в Беотии, в Центральной Греции, и уничтожили плантации, на которых британская фирма "Зенека" экспериментировала с помидорами. 1300 английских школ исключили из своих меню пищу, содержащую трансгенные растения, а Франция очень неохотно и медленно дает одобрение на продажу любых новых продуктов с чужими генами. В ЕС разрешены только три вида генетически измененных растений, а если точнее - три сорта кукурузы. Соя - пока единственная трансгенная культура, разрешенная к применению в России и в Казахстане. На подходе - трансгенный картофель, кукуруза и сахарная свекла. Если в 1996 году в мире под трансгенными культурами было занято 1,8 миллионов гектаров, то в 1999 году уже почти 40 миллионов. А в 2001 году, по прогнозам, будет не менее 60 миллионов. Это не считая Китая, который не дает официальной информации, но, по оценкам, около миллиона китайских фермеров выращивают трансгенный хлопок примерно на 35 млн. гектаров.
Первым искусственно изменённым продуктом стал помидор. Его новым свойством стала способность месяцами лежать в недоспелом виде при температуре 12 градусов. Но как только такой помидор помещают в тепло, он за несколько часов становится спелым. Американские компании Origen Therapeutics и Embrex планируют наладить массовое производство клонированных цыплят. Смысл всей затеи очевиден: тиражирование одной единственной жирной птички, которая мало ест, быстро растет и не болеет, представляется делом выгодным. Исследования, которые проводятся при поддержке Национального института науки и технологий, выделившего на проект 4,7 миллиона долларов, уже дали конкретные результаты. Технология клонирования в своем обычном виде, предполагающая перенос ядра клетки-донора в яйцеклетку с последующей ее имплантацией суррогатной матери, к птицам неприменима, поскольку, как известно, их эмбрионы развиваются не в матке, а в скорлупе. Генетические копии цыплят создаются иным образом. Ученые выделяют и размножают эмбриональные стволовые клетки донора, из которых с ростом эмбриона развиваются все ткани. Затем эти клетки имплантируются в обычное яйцо. Получающийся таким образом цыпленок является не генетической копией, а "химерой", поскольку вместе с донорскими клетками содержит и родные, те, что были в яйце. Однако ученые добились, чтобы донорских клеток было более 95 %, и даже создали 100-процентного клона. Для массового производства таких цыплят планируется использовать специальные машины, способные за час ввести инъекции в 50 тысяч яиц. Американцы добились изменения клубники, тюльпанов. Вывели сорт картофеля, который при жарке впитывает меньше жира. Они же скоро планируют получить помидоры-гиганты кубической формы, чтобы их было легче упаковывать в ящики. Швейцарцы начали выращивать кукурузу, которая выделяет собственный яд против вредителей. Был создан "помидор с жабрами" - помидор, в который для увеличения морозоустойчивости вживили ген североамериканской плоской рыбы. Кстати, именно этот гибрид овоща и рыбы получил кличку "завтрак Франкенштейна".В Московском институте картофелеводства выводится картофель с человеческим интерфероном крови, который повышает иммунитет. А в Институте животноводства получен патент на овцу, у которой в молоке присутствует сычужный фермент, необходимый для производства сыра. Специалисты утверждают, что при новой технологии производства сыра, достаточно будет всего 200 овец, чтобы обеспечить сыром всю Россию. Сегодня ученые работают над созданием "умных растений", которые могут посылать фермерам сигнал SOS, светиться, когда им не хватает воды или при первых признаках заболевания.

Сейчас 90 процентов экспорта трансгенных пищевых продуктов составляют кукуруза и соя. То, что попкорн, которым повсеместно торгуют на улицах, стопроцентно изготовлен из генетически модифицированной кукурузы, и маркировки на ней до сих пор не было. Если соевые продукты поступают из Северной Америки или Аргентины, то на 80 процентов это генетически измененная продукция.

Основное преимущество трансгенных продуктов в их цене. Они значительно дешевле обычных, поэтому сейчас они покоряют, прежде всего, рынки слабо развитых стран, куда направляются в качестве гуманитарной помощи.

Но в будущем, несмотря на протесты экологов, экологически чистые продукты, вероятно, станут ассортиментом небольших, но очень дорогих магазинов.

В настоящее время в США продается и выращивается около полусотни генетически модифицированных сельскохозяйственных культур и продуктов питания. Отмечается их широкое проникновение в пищевые цепи и окружающую среду в целом. Более 70 миллионов акров земли занято в США под трансгенные культуры, свыше 500 тысяч коров молочных пород регулярно получают рекомбинантный гормон роста крупного рогатого скота (rBGH) фирмы Monsanto.

Для быстрого набирания веса добавляют в корм бычков и птицы различные биодобавки и стимуляторы, а также делают им определенные инъекции. Все эти вещества сохраняются в мясе.

Многие полуфабрикаты и готовые продукты в супермаркетах дают "положительную реакцию" на содержание генетически модифицированных ингредиентов. Еще несколько десятков трансгенных культур находятся в финальной стадии разработки и вскоре попадут на полки магазинов и в окружающую среду.

Согласно данным самих биотехнологов, в ближайшие 5-10 лет все продукты питания и ткани в США будут содержать генетически измененный материал. "Скрытое меню" немаркированных трансгенных пищевых продуктов и ингредиентов включает в себя соевые бобы и масло, кукурузу, картофель, рапсовое и хлопковое масло, папайю, помидоры.

Практика генной инженерии в отношении пищевых продуктов и тканей приводит к непредсказуемым результатам и представляет угрозу для людей, животных, окружающей среды и будущего устойчивого органического земледелия. Как указал британский молекулярный биолог доктор Майкл Антониу, манипуляции с генами приводят к "неожиданному появлению токсинов в трансгенных бактериях, дрожжах, растениях и животных, причем это явление остается незамеченным до тех пор, пока не нанесет серьезный ущерб чьему-либо здоровью". Риск от использования генетически модифицированных продуктов питания и сельскохозяйственных культур можно разделить на три категории: риск для здоровья людей, риск для окружающей среды и социально- экономический риск. Краткий обзор этих рисков, как уже доказанных, так и возможных, предоставляет убедительные аргументы в пользу необходимости глобального моратория на производство трансгенных культур и организмов.

Полным ходом идут работы по созданию пластмассы, которая бы разрушалась, попадая в окружающую среду - в масличные культуры вводят гены бактерий, позволяющие выращивать эту биоразлагаемую пластмассу прямо на полях. Недавно американцы заявили, что им удалось добавить в генную структуру обычного хлопка гены растений, цветущих голубым цветом. Появилась реальная возможность революционизировать рынок джинсовой ткани - красильное производство прекратит сброс в окружающую среду ядовитых сточных вод. Эта технология будет запущена в производство в 2005 году. Эксперименты ведутся и в другой области - области запахов. Некоторые не любят запах роз, считая его слишком приторным, - для таких людей можно выращивать розы, благоухающие лимоном. Можно даже вырастить розу, издающую аромат духов Кельвина Клайна - манипуляции с генами, отвечающими за запах, позволяют вывести растения с любым ароматом.
Ситуация по ГМП в Казахстане

Неправительственные организации в Казахстане требуют запретить реализацию партии трансгенного детского питания компании «Нестле» - под таким названием 1 августа 2007 г. прошла пресс-конференция в городе Алматы (Казахстан), организованная Фондом интеграции экологической культуры (ФИЭК) совместно с Лигой потребителей Казахстана.
В 2002-2003 гг. ФИЭК совместно с Агентством экологической новостей Greenwomen при участии Института сотрудничества в целях развития и при поддержке Голландского гуманистического института ХИВОС организовал информационную кампанию, посвященную проблемам практического применения генетически модифицированных организмов (ГМО). В рамках кампании, помимо работы со СМИ, выпуска журналов и пособий по ГМО, проведения семинаров и организации исследовательской деятельности, в марте 2003 г. ФИЭК отправил предложения парламентариям, работающим над законопроектом «О качестве и безопасности пищевых продуктов», с целью включения в него вопросов регулирования генетически модифицированных (ГМ) продуктов питания. Депутаты Мажилиса, разработчики законопроекта, в свою очередь запросили у ФИЭК и Greenwomen конкретные предложения, которые были им предоставлены. В результате рекомендации были приняты к рассмотрению и включены в законопроект.
Таким образом, в 2004 г. в Казахстане был принят Закон «О качестве и безопасности пищевых продуктов», который запрещает использование ГМО при производстве продуктов детского, лечебно-профилактического и диетического питания, а также устанавливает нормы по обязательной маркировке продуктов, полученных с помощью ГМО. Несмотря на то, что Закон имеет силу уже три года, в Казахстане до сих пор не создана система, гарантирующая его выполнение. Исполнительные органы власти не обеспечивают надлежащий контроль продукции, поступающей в Казахстан, на предмет содержания в ней продуктов генной инженерии, ссылаясь на отсутствие ГМО как таковых в Казахстане. Фактически использовать ли ГМО там, где это запрещено, маркировать ли продукцию, содержащую трансгенные компоненты, в Казахстане производители решают, опираясь только на свою совесть.

Согласно данным, предоставленным Комитетом санитарного эпидемиологического надзора), за трехлетний период только в Казахской Академии питания была создана лаборатория, которая протестировала из всего разнообразия 110 наименований продуктов. Академией питания выявлены трансгенные компоненты в продуктах спортивного питания, бобах и сое, но при этом факты нарушения обязательной маркировки не выявлены. Таким образом, из данного документа следует, что Академия питания, осуществляя контроль выполнения норм по обязательной маркировке продукции, содержащей ГМ ингредиенты, исследует продукты питания, которые уже имеют соответствующую маркировку на упаковке. При этом результаты своих исследований Академия питания скрывает – так, на официальный запрос ФИЭК от 03 апреля 2007 г. с просьбой предоставить результаты лабораторных исследований, до сих пор нет ответа.
Вместо того, чтобы обеспечивать выполнение законодательства, сотрудники Санитарной эпидемиологической службы (в частности Департамента г. Алматы) и сотрудники Академии питания позволяют себе лоббировать вопросы выращивания ГМО на территории страны, мотивируя это борьбой с голодом и экономической выгодой использования ГМО для Казахстана.

Эти вопросы, во-первых, не входят в компетенцию данных учреждений, а, во-вторых, вводят в заблуждение, так как не соответствует действительности, как показывает мировой опыт при этом Академия питания входила в Национальный Координационный Комитет по Биобезопасности (2004-2005 гг.) и выступала против ГМО.

По словам гл. ученый секретарь НАН РК, академик НАН РК, д. т. н. профессора Чоманова У.Ч. Казахстан при населении около 15 млн. человек имеет потенциал сельскохозяйственного сектора, способного прокормить 1 млрд. человек естественной экологически чистой продукцией».

Результаты показали, что из шести закупленных в одном из супермаркетов города Алматы продуктов питания в одном содержались трансгенные компоненты, а именно в детском питании компании «Нестле», Нидерланды («Нестле HAH безлактозная смесь»).

Как уже упоминалось, Лига потребителей Казахстана и ФИЭК направили письмо, адресованное Правительству Республики Казахстан, а именно - на имя Премьер-министра г-на Масимова К.К. с убедительной просьбой:
создать систему, гарантирующую безопасность ГМО;
ввести в Республике Казахстан мораторий на любой выпуск ГМ сельскохозяйственных и других культур (как коммерческое производство, так и тестовые поля), пока не будет создана система, гарантирующая безопасность ГМО;

Рассмотреть вопрос о присоединении Казахстана к Картахенскому протоколу по биобезопасности, который позволит основывать решения на принципе предосторожности и создавать стимулирующую среду для экологически безопасного применения биотехнологии.
В настоящее время предприняты Правительством следующие меры по регулированию ГМО:

Министерством сельского хозяйства внесен в Правительство Республики Казахстан проект постановления, согласованный с Министерством здравоохранения, «О проекте Закона Республики Казахстан «О присоединении Республики Казахстан к Картахенскому протоколу по биобезопасности к Конвенции о биологическом разнообразии».
Издан приказ Министра здравоохранения Республики Казахстан № 142 «Об утверждении Правил государственной регистрации продуктов детского питания, пищевых и биологически активных добавок к пище (нутрицевтиков), генетически модифицированных источников, красителей, материалов и изделий, контактирующих с водой и продуктами питания, химических веществ, отдельных видов продукции и веществ, оказывающих вредное воздействие на здоровье человека», который в том числе регламентирует порядок регистрации генно-модифицированной продукции.

Для проведения исследований пищевой продукции, в том числе и детского питания, на содержание в ней ГМ источников на базе ГУ «Республиканская санитарно-эпидемиологическая станция» Министерства здравоохранения Республики Казахстан до конца 2007 г. будет организована лаборатория по контролю за ГМ продуктами питания. Аналогичные региональные лаборатории планируется создать в 2008 г. на базе лабораторий санитарно-эпидемиологической службы Восточно-Казахстанской, Западно-Казахстанской, Северно-Казахстанской областей и г. Астаны.
Министерство здравоохранения полностью поддерживает введение моратория на производство пищевой продукции с использованием ГМО до создания соответствующей базы по их исследованию.

Помимо этого в настоящее время Министерством образования и науки Республики Казахстан начата разработка научно-технической программы по регулированию оборота ГМО в Казахстане, на реализацию которой из средств республиканского бюджета выделяется более 2 млрд. тенге на период 2008-2010 гг.

С момента создания (2002 г.) ФИЭК борется с неконтролируемым распространением ГМО в Казахстане. И тот процесс дает надежду на будущее без опасных экспериментов над здоровьем нации, над уникальным биологическим разнообразием страны и на продовольственную безопасность Казахстана.

Казахстан трудно назвать страной со слабым экологическим законодательством. Однако в ситуации повсеместного бесконтрольного распространения ГМО в мире его оказалось явно недостаточно. Слабое регулирование в сфере биобезопасности может поставить Казахстан на грань не только экологической катастрофы, но и сделать сельхозпроизводителей зависимыми от транснациональных корпораций-производителей ГМО. Ввозимые в Казахстан семена пока не подвергаются регулярной экспертизе на содержание трансгенов. Испытательные поля, на которых специалисты экспериментируют с ГМ-растениями, никак не охраняются.

Сторонники внедрения ГМО в Казахстане, в частности лобби импортеров зерна открыто заявляют, что в стране уже готовится так называемый «бразильский вариант», когда в определенный момент обнаружится, что трансгенный картофель или соя уже выращиваются на больших площадях. Ограничение и регулирование придется вводить задним числом, что, несомненно, отразится на его качестве, а проволочки в этом вопросе могут привести к генетическому загрязнению традиционных культур, нарушению естественных экосистем из-за проникновения в них ГМО. Это станет также и серьезной экономической проблемой, так как генные вставки, содержащиеся в ГМ-растениях, являются собственностью транснациональных корпораций, за использование ГМ-семян необходимо выплачивать роялти.

Трансгенными могут называться те виды растений, в которых успешно функционирует ген (или гены) пересаженные из других видов растений или животных. Делается это для того, чтобы растение-реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генноизмененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться. Также часто такие растения дают более богатый и стабильный урожай, чем их природные аналоги.

Что такое генетически измененный продукт? Это когда выделенный в лаборатории ген одного организма пересаживается в клетку другого. Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи; чтобы скот быстрее набирал вес, ему вкалывают измененный гормон роста (но при этом молоко наполняется гормонами, вызывающими рак); чтобы соя не боялась гербицидов, в нее внедряют гены петунии, а также некоторых бактерий и вирусов. Соя - один из основных компонентов многих кормов для скота и почти 60% продуктов питания. К счастью, в России, как и во многих странах Европы, генетически измененные сельхозкультуры (в мире их создано больше 30-ти видов) пока не распространяются такими бешеными темпами, как в США, где официально закреплена идентичность "натуральных" и "трансгенных" продуктов питания. Поэтому у нас только самые "продвинутые" покупатели с подозрением относятся к импортным чипсам, томатным соусам, консервированной кукурузе и "ножкам Буша".

На данный момент в России зарегистрировано множество видов продуктов из модифицированной сои, среди которых: фитосыр, смеси функциональные, сухие заменители молока, мороженое "Сойка-1", 32 наименования концентратов соевого белка, 7 видов соевой муки, модифицированные бобы сои, 8 видов соевых белковых продуктов, 4 наименования соевых питательных напитков, крупка соевая обезжиренная, комплексные пищевые добавки в ассортименте и специальные продукты для спортсменов, тоже в немалом количестве. Также Департамент государственного санитарно-эпидемиологического надзора выдал "сертификаты качества" одному сорту картофеля и двум сортам - кукурузы.

Надзор за генетически модифицированными продуктами осуществляется Научно-исследовательским институтом питания РАМН и также учреждениями-соисполнителями: Институтом вакцин и сывороток им. И. И. Мечникова РАМН, Московским научно-исследовательским институтом гигиены им. Ф.Ф. Эрисмана Минздрава России.

Последнее десятилетие ученые строят неутешительные прогнозы относительно быстрорастущего потребления сельскохозяйственных продуктов на фоне снижения площади посевных земель. Решение данной проблемы возможно с помощью технологий получения трансгенных растений, направленных на эффективную защиту сельскохозяйственных культур и увеличение урожайности.

Получение трансгенных растений является на данный момент одной из перспективных и наиболее развивающихся направлений агропроизводства. Существуют проблемы, которые не могут быть решены такими традиционными направлениями как селекция, кроме того, что на подобные разработки требуются годы, а иногда и десятилетия. Создание трансгенных растений, обладающих нужными свойствами, требует гораздо меньшего времени и позволяет получать растения с заданными хозяйственно ценными признаками, а также обладающих свойствами, не имеющими аналогов в природе. Примером последнего могут служить полученные методами генной инженерии сорта растений, обладающих повышенной устойчивостью к засухе.

Создание трансгенных растений в настоящее время развиваются по следующим направлениям:

1. Получение сортов сельскохозяйственных культур с более высокой урожайностью.

2. Получение сельскохозяйственных культур, дающих несколько урожаев в год (например, в России существуют ремонтантные сорта клубники, дающие два урожая за лето).

3. Создание сортов сельскохозяйственных культур, токсичных для некоторых видов вредителей (например, в России ведутся разработки, направленные на получение сортов картофеля, листья которого являются остро токсичными для колорадского жука и его личинок).

4. Создание сортов сельскохозяйственных культур, устойчивых к неблагоприятным климатическим условиям (например, были получены устойчивые к засухе трансгенные растения, имеющие в своем геноме ген скорпиона).

5. Создание сортов растений, способных синтезировать некоторые белки животного происхождения (например, в Китае получен сорт табака, синтезирующий лактоферрин человека).

Таким образом, создание трансгенных растений позволяет решить целый комплекс проблем, как агротехнических и продовольственных, так и технологических, фармакологических и т.д. Кроме того, уходят в небытие пестициды и другие виды ядохимикатов, которые нарушали естественный баланс в локальных экосистемах и наносили невосполнимый ущерб окружающей среде.

Методы создания трасгенных продуктов

Создать геноизмененное растение на данном этапе развития науки для генных инженеров не составляет большого труда.

Существует несколько достаточно широко распространенных методов для внедрения чужеродной ДНК в геном растения.

Существует бактерия Agrobacterium tumefaciens (Лат.- полевая бактерия, вызывающая опухоли), которая обладает способностью встраивать участки своей ДНК в растения, после чего пораженные клетки растения начинают очень быстро делиться и образуется опухоль. Сначала ученые получили штамм этой бактерии, не вызывающий опухолей, но не лишенный возможности вносить свою ДНК в клетку. В дальнейшем нужный ген сначала клонировали в Agrobacterium tumefaciens и затем заражали уже этой бактерией растение. После чего инфецированые клетки растения приобретали нужные свойства, а вырастить целое растение из одной его клетки сейчас не проблема.

Клетки, предварительно обработанные специальными реагентами, разрушающими толстую клеточную оболочку, помещают в раствор, содержащий ДНК и вещества, способствующие ее проникновению в клетку. После чего выращивали из одной клетки целое растение.

Существует метод бомбардировки растительных клеток специальными, очень маленькими вольфрамовыми пулями, содержащими ДНК. С некоторой вероятностью такая пуля может правильно передать генетический материал клетке и так растение получает новые свойства. А сама пуля ввиду ее микроскопических размеров не мешает нормальному развитию клетки.

Итак, задача, которую надо решить при создании трансгенного растения - организма с такими генами, которые ему от природы "не положены", - это выделить нужный ген из чужой ДНК и встроить его в молекулу ДНК данного растения. Процесс этот весьма сложен.

Более четверти века назад были открыты ферменты рестриктазы, разделяющие длинную молекулу ДНК на отдельные участки - гены, причем эти кусочки приобретают "липкие" концы, позволяющие им встраиваться в разрезанную такими же рестриктазами чужую ДНК.

Самый распространенный способ внедрения чужих генов в наследственный аппарат растений - с помощью болезнетворной для растений бактерии Agrobacterium tumefaciens. Эта бактерия умеет встраивать в хромосомы заражаемого растения часть своей ДНК, которая заставляет растение усилить производство гормонов, и в результате некоторые клетки бурно делятся, возникает опухоль. В опухоли бактерия находит для себя отличную питательную среду и размножается. Для генной инженерии специально выведен штамм агробактерии, лишенный способности вызывать опухоли, но сохранивший возможность вносить свою ДНК в растительную клетку.

Нужный ген "вклеивают" с помощью рестриктаз в кольцевую молекулу ДНК бактерии, так называемую плазмиду. Эта же плазмида несет ген устойчивости к антибиотику. Лишь очень небольшая доля таких операций оказывается успешной. Те бактериальные клетки, которые примут в свой генетический аппарат "прооперированные" плазмиды, получат кроме нового полезного гена устойчивость к антибиотику. Их легко будет выявить, полив культуру бактерий антибиотиком, - все прочие клетки погибнут, а удачно получившие нужную плазмиду размножатся. Теперь этими бактериями заражают клетки, взятые, например, из листа растения. Опять приходится провести отбор на устойчивость к антибиотику: выживут лишь те клетки, которые приобрели эту устойчивость от плазмид агробактерии, а значит, получили и нужный нам ген. Дальнейшее - дело техники. Ботаники уже давно умеют вырастить целое растение из практически любой его клетки.

Однако этот метод "работает" не на всех растениях: агробактерия, например, не заражает такие важные пищевые растения, как рис, пшеница, кукуруза. Поэтому разработаны другие способы. Например, можно ферментами растворить толстую клеточную оболочку растительной клетки, мешающую прямому проникновению чужой ДНК, и поместить такие очищенные клетки в раствор, содержащий ДНК и какое-либо химическое вещество, способствующее ее проникновению в клетку (чаще всего применяется полиэтиленгликоль). Иногда в мембране клеток проделывают микроотверстия короткими импульсами высокого напряжения, а через отверстия в клетку могут пройти отрезки ДНК. Иногда применяют даже впрыскивание ДНК в клетку микрошприцем под контролем микроскопа. Несколько лет назад было предложено покрывать ДНК сверхмалые металлические "пули", например шарики из вольфрама диаметром 1-2 микрона, и "стрелять" ими в растительные клетки. Проделываемые в стенке клетки отверстия быстро заживляются, а застрявшие в протоплазме "пули" так малы, что не мешают клетке функционировать. Часть "залпа" приносит успех: некоторые "пули" внедряют свою ДНК в нужное место. Дальше из клеток, воспринявших нужный ген, выращивают целые растения, которые затем размножаются обычным способом.

Общая характеристика. Генетически модифицированные (трансгенные) продукты питания представляют особый интерес. В рассуждениях, как специалистов, так и простых потребителей о безопасности продуктов питания часто упоминаются и тяжелые металлы, и нитраты, и пестициды и ряд других ксенобиотиков, причем даже неспециалисты представляют их опасность и мнение об их негативном влиянии на организм едино. Когда же речь заходит о генетически модифицированных продуктах, даже мнения людей, профессионально изучающих данный вопрос, оказываются диаметрально противоположными.

Опрос Всероссийского центра изучения общественного мнения (ВЦИОМ) показал: 68% россиян не готовы потреблять продукты, изготовленные с использованием генно-модифицированных организмов (ГМО). Между тем 31% респондентов не знают о них вообще ничего, свыше 45% что-то слышали о генно-модифицированных продуктах, и только 22% знают о них достаточно много.

За ХХ в. численность населения Земли увеличилась с 1,5 до 6 млрд. человек. Предполагается, что к 2020 г. она вырастет до 8 млрд. При этом производство сельскохозяйственной продукции за последние 40 лет выросло в среднем в 2,5 раза, и дальнейший его рост традиционными методами представляется маловероятным.

Решение проблемы увеличения производства продуктов питания старым методом уже невозможно. Традиционные сельскохозяйственные технологии исчерпали себя: в последние 20 лет человечеством потеряно свыше 15% плодородного почвенного слоя, а большая часть пригодных к возделыванию почв уже вовлечена в хозяйственный оборот.

Создание в 1983 г. первого трансгенного растения, а затем и, проведенные в 1986 г. первые успешные полевые испытания, открыли широкие перспективы использования генной инженерии в сельском хозяйстве для изменения агротехнических характеристик культур с целью увеличения их урожайности, а также улучшения пищевой и кормовой ценности продукции. Вследствие этого с каждым годом появляется все больше генетически модифицированных организмов (ГМО), которые используют в качестве продуктов питания (картофель, кукуруза, помидоры, рыба и др.) или включают ГМ-компоненты (например, крахмал, соевая мука, томатная паста и др.).

В настоящее время 18 стран выращивают трансгенную продукцию: США, Канада, Мексика, Гондурас, Колумбия, Аргентина, Уругвай, Бразилия, ЮАР, Индия, Австралия, Индонезия, Филиппины, Китай, Германия, Румыния и др. И если в 1996 г. под трансгенные растения в мире было засеяно 1,7 млн. га, то уже в 2005 г. – 90 млн га.

Против генетически модифицированных источников существуют различные мнения.

Первое, замена одних генов на другие в живых организмах нарушает систему гомеостаза – ослабляет их жизненные силы. Считается, что конечным результатом может быть создание лишь курьезных домашних животных и растений, не жизнеспособных в природе, т.е. трансгенные виды могут не дать потомства или же обладать свойствами, которые приведут к гибели этих животных или растений. А те полезные свойства, ради которых и разрабатывались эти культуры, через несколько поколений практически исчезнут.


Второе, биологическая наука не дает ответа на вопрос: насколько высока возможность генно-инженерных культур стать инвазивными (инвазия – нашествие), вытесняющими традиционные сорта сельхозрастений. Спустя десятилетия последние могут исчезнуть на Земле, поскольку урожайность трансгенных выше на 10–20% и они провоцируют возникновение инфекционных заболеваний у обычных растений – ржавчина или головня хлебных злаков, поражение грибком картофеля. Кроме того, ученые, перенося ген с одного организма на другой в надежде, что с ним перейдет некое полезное свойство, не учитывают, что переходят и вредные свойства.

Третье, в результате все более масштабного производства трансгенных растений, происходит сужение генетической базы семеноводства и монополизация четырьмя-пятью транснациональными компаниями производства и рынка всего мирового семенного фонда.

Четвертое, многие ученые сходятся на том, что трансгенные растения могут наносить вред здоровью человека.

Генетически модифицированный организм (ГМО) – организм или несколько организмов, любое неклеточное, одноклеточное или многоклеточное образование, способные к воспроизводству или передаче наследственного генетического материала, отличные от природных организмов, полученные с применением методов генной инженерии и содержащие генно-инженерный материал, в том числе гены, их фрагменты или комбинации генов.

Генетически модифицированные источники пищи (ГМИ) –пищевые продукты или компоненты пищевых продуктов, полученные из генетически модифицированных организмов, и используемые человеком в пищу в натуральном или переработанном виде.

Получение генетически модифицированных организмов. Получение генетически модифицированных организмов связано со «встраиванием» целевого гена в ДНК других растений или животных (производят транспортировку гена, т.е. трансгенизацию) с целью изучения свойств или параметров последних.

Несовершенство «встраивания» гена в геном другого организма является одной из причин опасности ГМО. В настоящее время наиболее распространенными являются два способа введения гена (рис. 3.1): агробактериальный и биобаллистический. При применении первого способа используют плазмиды (кольцевые ДНК) почвенных бактерий (Agrobacterium tumefaciens и Agrobacterium rhizogenes ), с помощью которых и «встраивают» нужный ген в геном клетки (приложение). При биобаллистическом способе в специальной вакуумной камере производят «обстрел» растительных клеток микроскопическими вольфрамовыми или золотыми частицами с нанесенными на них генами и нуклеотидными последовательностями, управляющими этими генами (прямой ввод гена в геном клетки-хозяина). При обоих способах «встраивания» гена производят селекцию трансформированных клеток и регенерацию трансгенных растений. Наиболее распространенным является агробактериальный способ введения целевого гена. Оба способа «встраивания» гена являются несовершенными и не дают полной гарантии безопасности тех организмов, которые создаются с их помощью. При биобаллистическом способе достаточно высока вероятность «встраивания» сразу многих копий ДНК-векторов, «обрывков» ДНК и других сбоев. При этом могут появляться растения с неизвестными свойствами. Другой способ, агробактериальный, является еще более опасным и непредсказуемым, чем первый.

Сторонники ГМО уверенны, что ГМ-вставки полностью распадаются в желудочно-кишечном тракте человека. Они утверждают, что присутствие в пищевых продуктах и кормах рекомбинантной ДНК само по себе не представляет опасности для здоровья человека и животных, по сравнению с традиционными продуктами, так как любая ДНК состоит из нуклеотидных оснований, а генетическая модификация оставляет неизменной их химическую структуру и не увеличивает общего содержания генетического материала. Человек ежедневно потребляет с пищей ДНК и РНК в количестве от 0,1 до 1,0 г в зависимости от вида потребляемых продуктов и степени их технологической обработки.

Как реагировать, если наклейка на колбасе гласит: «Содержит генетически измененную сою»? Страх перед трансгенами уже укоренился в народе, однако, отведав такой продукт, никто еще не превратился в мутанта из кинофильма. В чем состоят плюсы и минусы генетически модифицированных продуктов?

Уже к 2020 году число жителей Земли достигнет 7,7 млрд. человек, а это, естественно, потребует увеличения производства пищи. Полностью синтетические продукты питания все еще остаются уделом фантастов – основную массу растительной и животной пищи нам пока дает сельское хозяйство.

Но в XXI веке старые меры повышения урожайности сортов и пород уже оказываются малоэффективными – традиционная селекция себя практически исчерпала. Достаточно вспомнить, что это весьма длительный процесс: на создание одного сорта растения или породы животных тратятся многие года, причем зачастую новый «продукт» лишь незначительно превосходит по качеству предыдущие варианты. Вот тут-то на помощь и пришла генная инженерия.

Изучение ДНК, работы генов, их строения и функций позволило ученым узнать, какие именно гены контролируют проявление интересных человеку признаков. Используя методы генной инженерии, некоторыми из них можно управлять. Речь идет о технологии, позволяющей с помощью молекулярно-биологических методов изменить строение генов или внести в организм чужеродные гены с заданными функциями. При этом в организм переносится только один ген, а остальной генотип остается неизменным; кроме того, мы можем придать организму признаки, которые нельзя перенести путем скрещивания с близкородственными видами. Казалось бы, мечта традиционных селекционеров сбылась.

Большинство генных модификаций проводится над растениями и направлено на развитие устойчивости к сельскохозяйственным вредителям или вирусам, а также на выживание при обработке полей гербицидами, улучшение вкусовых и технических свойств. Иногда генетической модификации подвергают и бактерий – их «заставляют» производить целевой продукт (скажем, инсулин) в качестве конечного продукта своего метаболизма. Особенно удачные разновидности (штаммы) микроорганизмов патентуются, после чего содержатся только в лабораториях. Именно таким образом сейчас получают многие ценные лекарства.

Безопасны ли для употребления в пищу трансгенные растения? Дискуссии по этому поводу не утихают. Потенциальный риск использования ГМ-продуктов в основном сводится к следующему: не оказывают ли введенные гены вредного влияния на здоровье человека и не приведут ли измененные организмы к разрушению экологии, в случае проникновения ГМ-видов в природу?

Говоря о влиянии на здоровье, противники генных технологий зачастую не могут обосновать свои опасения на должном уровне, поскольку количество корректных научных работ, затрагивающих тему безопасности ГМ-организмов, весьма ограничено – слишком мало времени прошло с начала использования этой, безусловно, прогрессивной технологии. Это также связано с трудностями объективной и корректной постановки экспериментов по исследованию безопасности – есть немало примеров того, как, например, лабораторных мышей долго кормили новым сортом трансгенного картофеля, в результате чего животные болели и умирали. После таких опытов критики трансгенов сразу идут на телевидение и объявляют о безусловной вредности последствий такой модификации, не задумываясь: а привычна ли такая еда подопытным животным и будет ли человек есть сырой картофель, который использовался в опытах? Последующее увольнение такого торопливого научного сотрудника обычно не афишируется…

Биохимики, физиологи и молекулярные биологи из различных научных сообществ по всему миру утверждают, что с биологической точки зрения не существует никакого различия между растениями, полученными с помощью генной инженерии, и растениями, выведенными традиционными методами селекции – в конечном итоге, еда расщепляется в пищеварительном тракте до «первокирпичиков»: белки – до аминокислот, жиры – до глицерина и жирных кислот, а углеводы – до моносахаридов. Здесь важно отметить, что чужеродные гены ни при каких условиях не могут встроиться из пищи в организм и привести к мутациям – едим же мы обычную картошку, рыбу и свинину, но киношных изменений внешности у людей пока никто не наблюдал…

Другая часто упоминаемая проблема, связанная с ГМ-продуктами – аллергия. Фирмы-производители уверяют, что вся трансгенная продукция, выпускаемая на рынок, проходит обязательный тест на аллергенность, в котором проверяется максимально доступное количество известных на данный момент веществ, способных вызывать тяжелую аллергическую реакцию. Кстати, для развития аллергии генетическая модификация не нужна: любой человек-аллергик может запросто встретиться с новым для него «опасным веществом» в самых обычных, не трансгенных продуктах – сейчас в Россию массово импортируются новые для нас экзотические фрукты, морепродукты и т.д.

Третья возможная проблема, связанная с использованием и распространением ГМ-организмов, особенно растений, выращиваемые в открытом грунте, – это, конечно, взаимодействие их с природными «сородичами». Какие тут могут быть последствия? Как известно, дикие особи являются продуктом длительной эволюции и лучше всех приспособлены к жизни. ГМ-растения просто не смогут надолго сохранить свои необычные признаки и попросту «растворятся в море» диких трав.

Подводя итоги, следует подчеркнуть, что отказ от генетической модификации и возвращение к традиционным методам сельского хозяйства будет означать массированное использование ядохимикатов и гербицидов, что принесет несоизмеримо больше вреда экологическому равновесию. Во-первых, реагенты часто применяются безрецептурно и в гигантских количествах. В-третьих, химикаты не отличаются избирательностью действия, а, следовательно, вредят всей окружающей среде и загрязняют грунтовые воды – единственный чистый источник питьевой воды на нашей планете.

В России ситуация с ГМ-продуктами до сих пор оставалась довольно спокойной – посевов трансгенных культур для коммерческого применения пока нет, существуют лишь экспериментальные поля при исследовательских центрах. В то же время, в США трансгены уже полностью покорили страну: значительную часть рациона американцев составляют продукты, приготовленные из ГМ-растений – гамбургеры, салаты, картофель фри.

Что касается экспертизы и маркировки ГМ-продуктов, в нашей стране такими исследованиями занимаются НИИ питания (Головной испытательный Центр Минздрава России), Институт вакцин и сывороток им. И. И. Мечникова и московский НИИ гигиены им. Ф. Ф. Эрисмана. Медико-генетическая оценка пищевых продуктов осуществляется Центром «Биоинженерия», а также Медико-генетическим научным центром. Результаты исследований публикуются в журнале «Вопросы питания», и пока явного «негатива» учеными обнаружено не было.

В целом же, пугаться слов «генетически модифицированный» не стоит – все живое в природе постоянно подвергается изменениям такого рода. Человек, в данном случае, просто выступает в качестве «руководителя» – остается только уповать на его разумность.

Лучшие статьи по теме