Психология. Отношения. Личность. Общение
  • Главная
  • Общение
  • Самые полезные бактерии и их названия. Бактерии — хорошие, плохие, вечные Сенсорные функции и поведение

Самые полезные бактерии и их названия. Бактерии — хорошие, плохие, вечные Сенсорные функции и поведение

Введение.

СТРОЕНИЕ И ЖИЗНЕДЕЯТЕЛЬНОСТЬ БАКТЕРИЙ

Строение

Сенсорные функции и поведение

Размножение и генетика

МЕТАБОЛИЗМ

Питание

Главные источники энергии

Дыхание

БАКТЕРИИ И ПРОМЫШЛЕННОСТЬ

Литература

Введение

БАКТЕРИИ, обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Вместе с тем генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) занимает в клетке вполне определенное место – зону, называемую нуклеоидом. Организмы с таким строением клеток называются прокариотами («доядерными») в отличие от всех остальных – эукариот («истинно ядерных»), ДНК которых находится в окруженном оболочкой ядре.

Бактерии, ранее считавшиеся микроскопическими растениями, сейчас выделены в самостоятельное царство Monera – одно из пяти в нынешней системе классификации наряду с растениями, животными, грибами и протистами.

Бактерии гораздо мельче клеток многоклеточных растений и животных. Толщина их обычно составляет 0,5–2,0 мкм, а длина – 1,0–8,0 мкм. Разглядеть некоторые формы едва позволяет разрешающая способность стандартных световых микроскопов (примерно 0,3 мкм), но известны и виды длиной более 10 мкм и шириной, также выходящей за указанные рамки, а ряд очень тонких бактерий может превышать в длину 50 мкм. На поверхности, соответствующей поставленной карандашом точке, уместится четверть миллиона средних по величине представителей этого царства.

Отчасти в силу мелких размеров бактерий интенсивность их метаболизма гораздо выше, чем у эукариот. При самых благоприятных условиях некоторые бактерии могут удваивать свою общую массу и численность примерно каждые 20 мин. Это объясняется тем, что ряд их важнейших ферментных систем функционирует с очень высокой скоростью. Так, кролику для синтеза белковой молекулы требуются считанные минуты, а бактерии – секунды. Однако в естественной среде, например в почве, большинство бактерий находится «на голодном пайке», поэтому если их клетки и делятся, то не каждые 20 мин, а раз в несколько дней.

Учитывая разнообразие катализируемых бактериями химических реакций, неудивительно, что они широко используются в производстве, в ряде случаев с глубокой древности. Славу таких микроскопических помощников человека прокариоты делят с грибами, в первую очередь – дрожжами, которые обеспечивают большую часть процессов спиртового брожения, например при изготовлении вина и пива. Сейчас, когда стало возможным вводить в бактерии полезные гены, заставляя их синтезировать ценные вещества, например инсулин, промышленное применение этих живых лабораторий получило новый мощный стимул.

Пищевая промышленность. В настоящее время бактерии применяются этой отраслью в основном для производства сыров, других кисломолочных продуктов и уксуса. Главные химические реакции здесь – образование кислот. Так, при получении уксуса бактерии рода Acetobacter окисляют этиловый спирт, содержащийся в сидре или других жидкостях, до уксусной кислоты. Аналогичные процессы происходят при квашении капусты: анаэробные бактерии сбраживают содержащиеся в листьях этого растения сахара до молочной кислоты, а также уксусной кислоты и различных спиртов.

БОРЬБА С БАКТЕРИЯМИ В ПРОМЫШЛЕННОСТИ

Бактерии приносят не только пользу; борьба с их массовым размножением, например в пищевых продуктах или в водных системах целлюлозно-бумажных предприятий, превратилась в целое направление деятельности.

Пища портится под действием бактерий, грибов и собственных вызывающих автолиз («самопереваривание») ферментов, если не инактивировать их нагреванием или другими способами. Поскольку главная причина порчи все-таки бактерии, разработка систем эффективного хранения продовольствия требует знания пределов выносливости этих микроорганизмов.

Одна из наиболее распространенных технологий – пастеризация молока, убивающая бактерии, которые вызывают, например, туберкулез и бруцеллез. Молоко выдерживают при 61–63° С в течение 30 мин или при 72–73° С всего 15 с. Это не ухудшает вкуса продукта, но инактивирует болезнетворные бактерии. Пастеризовать можно также вино, пиво и фруктовые соки.

Давно известна польза хранения пищевых продуктов на холоде. Низкие температуры не убивают бактерий, но не дают им расти и размножаться. Правда, при замораживании, например, до –25° С численность бактерий через несколько месяцев снижается, однако большое количество этих микроорганизмов все же выживает. При температуре чуть ниже нуля бактерии продолжают размножаться, но очень медленно. Их жизнеспособные культуры можно хранить почти бесконечно долго после лиофилизации (замораживания – высушивания) в среде, содержащей белок, например в сыворотке крови.

К другим известным методам хранения пищевых продуктов относятся высушивание (вяление и копчение), добавка больших количеств соли или сахара, что физиологически эквивалентно обезвоживанию, и маринование, т.е. помещение в концентрированный раствор кислоты. При кислотности среды, соответствующей pH 4 и ниже, жизнедеятельность бактерий обычно сильно тормозится или прекращается.

Муниципальное казенное общеобразовательное учреждение

«Каширинская средняя общеобразовательная школа им. Белоусова Д.А.»

Исследовательская работа на тему:

Бактерии, находящиеся на коже человека и их влияние на организм человека.

учитель биологии Захарова Екатерина Алексеевна

Каширино 2018г

Введение

Глава 1. Бактерии и их виды

Глава 2. Микрофлора кожи человека

Глава3. Методика исследования (практическая часть)

Заключение

Список литературы

Приложение

Введение

Бактерии одноклеточные организмы состоящие из одной клетки.

Бактерии встречаются повсеместно, населяя все среды обитания. Наибольшее количество их находится в почве на глубине до 3 км. Бактерии обнаружены в пресной и солёной воде, на ледниках и в горячих источниках. Их много в воздухе, в организмах животных и растений (как живых, так и мёртвых). Не является исключением и организм человека. Причём, 20% бактерий находится в полости рта, 20% - на кожных покровах, 15% - в глотке, 15% - в половых органах, 30% - в желудочно-кишечном тракте. Мне всегда было интересно знать, можно ли обнаружить бактерии на коже человека и какие бактерии там обитают?

Цель работы : исследовать кожу рук мальчиков и девочек, найти и изучить бактерии, обитающие на коже человека, сравнить полученные результаты и сделать выводы.

Задачи исследовательской работы:

Обнаружить бактерии на коже мальчиков и девочек;

Сформировать общее представление о бактериях обитающих на коже;

Раскрыть их влияние на организм;

Указать причины появления бактерий и использовать полученные

данные на уроке биологии в 5и 8 классе;

Раскрыть методы профилактики борьбы с бактериями.

Актуальность: выбранная тема актуальна, так как в настоящее время уделяется большое внимание изучению бактерий,их влияние на человек.

Гипотеза: я хочу предположить, что количество бактерий на коже человека напрямую зависит от того, какой образ жизни он ведёт и как он соблюдает правила личной гигиены.

Глава 1. Бактерии и их виды

В воздухе всегда содержится то или иное количество микроорганизмов. Посредством воздуха происходит их распространение. Воздушным путем распространяются патогенные микробы, вызывающие болезни растений животных и человека.

Количество микроорганизмов в 1 кубическом метре воздуха разных мест может достигать следующих размеров: на скотном дворе до 2 млн; в жилых помещениях - 20 тыс.; на улицах городов - 5 тыс. ; в парках - 200; в морском воздухе - 1-2.

Бактерии - это надцарство безъядерных микроорганизмов, у них нет четкой ядерной мембраны. Бактериальная клетка кружена плотной оболочкой, благодаря которой они сохраняют постоянную форму. В настоящее время описано около десяти тысяч видов бактерий. Бактерии бывают трех типов: патогенные, непатогенные.

Патогенные бактерии - это бактерии вызывающие болезни человека, животных и растений. Многие патогенные бактерии образуют скопление в организме в виде биоплёнок.

Кокки - это бактерии шаровидной формы. Распространены очень широко. В зависимости от расположения клеток по отношению друг к другу различают группы: микрококки, стрептококки, сарцины, тетракокки, диплококки, стафилококки. Спор не образуют. Большинство кокков, обитающих в почве, воде, воздухе, инертны в обычных условиях. Патогенные виды вызывают воспаления и гнойные заболевания.

Бациллы - род грамположительных палочковидных бактерий, образующих внутриклеточные споры. Большинство бацилл - сапрофиты. Некоторые бациллы вызывают болезни животных и человека.

Спириллы - род грамотрицательных бактерии, имеющие форму спирально извитых палочек. Подвижны. Спор не образуют. Некоторые патогенны. Обитают обычно в соленых и пресных водоемах.

Вибрионы - род грамотрицательные, изогнутые в виде запятой палочки, способны к быстрым колебательным движениям (отсюда название). Обитают в водоемах, почве, содержимом кишечника. Патогенные виды вибрионов вызывают холеру у человека и вибриоз у животных.

Непатогенные бактерии - это бактерии нормальной микрофлоры организма, не вызывающие развитие заболеваний, а часто помогающие организму (лактобактерии, бифидумбактерии, энтерококки, кишечная палочка и др.). Например, отдельные непатогенные бактерии, живущие на коже и в кишечнике человека, приносят пользу животному организму, поскольку способны вытеснять любую инфекцию с занятого ими участка поверхности. Биопрепараты из живых непатогенных бактерий (эубиотики) используются для профилактики и лечения дисбактериоза. Однако при определенных состояниях некоторые бактерии, считающиеся не болезнетворными, могут стать патогенными.

Размеры бактерий

Размеры бактерий в среднем составляют 0,5-5 мкм. Escherichia coli, например, имеет размеры 0,3-1 на 1-6 мкм, Staphylococcus aureus - диаметр 0,5-1 мкм, Bacillus subtilis 0,75 на 2-3 мкм. Крупнейшей из известных бактерий является Thiomargarita namibiensis, достигающая размера в 750 мкм (0,75 мм). Второй является Epulopiscium fishelsoni имеющая диаметр 80 мкм и длину до 700 мкм и обитающая в пищеварительном тракте хирурговой рыбы Acanthurus nigrofuscus. Achromatium oxaliferum достигает размеров 33 на 100 мкм, Beggiatoa alba - 10 на 50 мкм. Спирохеты могут вырастать в длину до 250 мкм при толщине 0,7 мкм. В то же время к бактериям относятся самые мелкие из имеющих клеточное строение организмов. Mycoplasma mycoides имеет размеры 0,1-0,25 мкм, что соответствует размеру крупных вирусов, например, табачной мозаики, коровьей оспы или гриппа.

Способы передвижения

Среди бактерий есть подвижные и неподвижные формы. Подвижные передвигаются за счёт волнообразных сокращений или при помощи жгутиков (скрученные винтообразные нити), которые состоят из особого белка флагеллина. Жгутиков может быть один или несколько. Располагаются они у одних бактерий на одном конце клетки, у других - на двух или по всей поверхности.

Но движение присуще и многим иным бактериям, у которых жгутики отсутствуют. Так, бактерии, покрытые снаружи слизью, способны к скользящему движению.

У некоторых лишённых жгутиков водных и почвенных бактерий в цитоплазме имеются газовые вакуоли. В клетке может быть 40-60 вакуолей. Каждая из них заполнена газом (предположительно азотом). Регулируя количество газа в вакуолях, водные бактерии могут погружаться в толщу воды или подниматься на её поверхность, а почвенные бактерии - передвигаться в капиллярах почвы.

Размножение бактерий

Большинство бактерий размножаются путём деления надвое, реже почкованием, а некоторые (например, актиномицеты) - с помощью экзоспор или обрывков мицелия. Известен способ множественного деления (с образованием мелких репродуктивных клеток).

Некоторые бактерии характеризуются сложным циклом развития, в процессе которого могут меняться морфология клеток и образовываться покоящиеся формы: цисты, споры.

Отличительной особенностью бактерий является способность к быстрому размножению. Например, время удвоения клеток кишечной палочки (Escherichia coli) составляет 20 мин. Подсчитано, что потомство одной клетки в случае неограниченного роста уже через 48 ч превысило бы массу Земли в 150 раз.

Вывод: невидимые, но вездесущие. Простые, но способные принимать самые разные формы. Микроскопические, но иногда смертельные.

Бактерии - самые настоящие невидимые хозяева Земли.

Глава 2.Микрофлора кожи человека

Кожа - наружный покров организма человека, защищающий тело от широкого спектра внешних воздействий, участвующий в дыхании. Терморегуляции, обменных и многих других процессах.

Вы себе и представить не можете, какое количество микробов обитает на коже и в теле человека. В основном, они находятся на коже и на слизистых оболочках. Те же самые организмы, что и в окружающей воздушной среде, находятся на коже человека. Как правило, это палочки, кокки и грибки.

Наша кожа, в связи с её постоянным контактом с внешней средой, становится местом обитания для огромного количества транзиторных микроорганизмов. Кроме этого, кожа имеет свою собственную, постоянную и хорошо изученную микрофлору. Её состав различается в разных анатомических зонах в зависимости от содержания кислорода в окружающей бактерии среде (аэробы — анаэробы) и близости к слизистым оболочкам (рот, нос), особенностей секреции и даже одежды человека. Особенно обильно заселены микроорганизмами те области кожных покровов, которые защищены от действия света и высыхания: подмышечные впадины, межпальцевые промежутки, паховые складки. В составе микрофлоры кожи и слизистых оболочек присутствуют: стафилококки, стрептококки, энтеробактерии, микрококки и т.д. Например, золотистый стафилококк. Эту бактерию можно подхватить где угодно - в больницах, детском саду, школе, спортзале, магазине, других общественных местах. Микробы стрептококки и стафилококки всегда находятся на поверхности кожного покрова человека. В норме, то есть когда иммунитет сдерживает их размножение, эти бактерии не активны и не раздражают организм. Однако, под воздействием определенных условий бактерии начинают очень быстро размножаться. Такое явление может иметь место при условии утраты кожей своих защитных свойств. Например, механической травмой может быть нарушена целостность кожного покрова, а организм остается беззащитен перед атакой микробов из окружающей среды.

2.1 Влияние бактерий на организм человека

B норме кожа человека заселена огромным количеством бактерий, мирно сосуществующих на ее поверхности или в волосяных фолликулах.

Однако кожа обладает определенными свойствами, защищающими ее от инфицирования бактериями. К ним относятся плотный и сухой ороговевший слой, практически непроницаемый для микроорганизмов, и клейкое межклеточное вещество — сложная смесь липидов, плотно соединяющая клетки слоя и также защищающая кожу, закупоривая вход в волосяные фолликулы.

Другие факторы, останавливающие проникновение патогенных микроорганизмов, включают постоянное обновление клеток кожи, кислое значение среды, наличие иммуноглобулинов в составе пота и различные виды кожной флоры.

Кожные инфекции, как правило, развиваются только тогда, когда травма, избыточная гидратация или воспалительные заболевания кожи нарушают эти защитные свойства. Организмы, вызывающие кожные инфекции, могут быть частью постоянной кожной флоры или ближайших слизистых оболочек или происходить из внешних источников, таких как другой человек, окружающая среда или зараженные объекты. Приведу примеры отрицательного влияния бактерий на кожу человека.

Гнойники на коже - это воспалительные элементы, образующиеся на кожном покрове человека. При развитии и созревании воспалений образуется гной. Причиной образования гнойников на коже являются специфические болезнетворные микроорганизмы, которые в процессе своей жизнедеятельности вырабатывают гной. К таким патологическим бактериям следует относить стафилококки и стрептококки, которые могут населять кожный покров и слизистые оболочки ротовой полости. Микробы также могут обнаруживаться в почве, воде и воздухе. Возбудители гнойников на коже имеют различное строение и по-разному выглядят на предметном стекле микроскопа.

Кожа вырабатывает около 500 мл пота в день. Сам пот не имеет запаха, и именно благодаря бактериям появляется запах тела. Наша кожа - это микромир, в котором живёт больше 1000 видов бактерий и около 1- го миллиарда отдельных бактерий.

Здоровая кожа характеризуется тем, что способна своими силами бороться с патогенными микроорганизмами, которые проникают на ее поверхность. Такая способность кожи объясняется несколькими моментами, в частности, химическим составом кожи. Органические кислотные соединения, входящие в структуру кожного покрова, кожное сало и другие составляющие кожи преграждают болезнетворным микробам путь к размножению. Особенность кожи, состоящая в самоочищении, реализуется за счет комбинации воздействия органических кислот, возможности обновляться и солнечного света, воздействующего на кожу. Причины, провоцирующие развитие гнойников на коже, запах пота, многочисленны и разнообразны. Они могут быть как человеческого происхождения, то есть развиваться из организма самого человека, а могут быть обусловлены негативным воздействием окружающей среды.

Вывод: так или иначе, по причине воздействия тех и других факторов кожа утрачивает способность противостоять болезнетворным бактериям. Чистая кожа гораздо эффективнее справляется с атакой вредных микроорганизмов, а грязная имеет заметно сниженный иммунитет. Следует иметь в виду, что загрязнение кожного покрова случается очень быстро, в частности, если человек постоянно соприкасается с загрязняющими факторами, например, на рабочем месте. Даже такие простые бытовые процедуры, как нерегулярная замена постельного или нижнего белья может привести к ослаблению защитной функции кожи, к образованию на ней гнойников, фурункулов и других заболеваний кожного покрова.

Глава 3. Методика исследования

Исследование проводилось на учениках. Добровольное участие приняли 6 девочек лет и 6 мальчиков.

Цель исследования: изучить бактерии, находящиеся на коже рук мальчиков и девочек, а также сравнить полученные результаты и сделать выводы.

Оборудование: стерильные чашки Петри; твёрдая питательная среда; микроскоп; предметные и покровные стёкла; фотоаппарат.

Методика исследования: применён метод переноса бактерий на чашку Петри с кожи рук человека (с ладоней и предплечья).

1. Подготовка питательной среды. Для этого нам нужен желатин и мясной бульон. Желатин - это желе, которое используют в кулинарии. Делается желатин из красных и бурых водорослей. Он представляет собой идеальную среду для микроорганизмов.

Я смешала бульон с порошком желатина, на огне в ёмкости, довела до кипения, кипятила в течение минуты.

Питательная среда считается готовой, когда порошок полностью растворился, а сама жидкость - прозрачная.

Дал питательной среде остыть, затем перешёл к следующим шагам.

2. Подготовка чашек Петри. Это небольшие плоские чашки из стекла. Чашки Петри должны быть стерильны, иначе результаты эксперимента по выращиванию бактерий пойдут насмарку. Очень аккуратно залила питательную среду в нижнюю половинку чашки тонким слоем, только лишь покрывающим дно. Быстро закрыл чашку Петри, чтобы не допустить попадания в бактерий из воздуха. Дал чашкам Петри спокойно постоять минут 30-120, пока питательная среда не остынет и не затвердеет (готовая питательная среда напоминает желе).

3. Посадка бактерий в чашку Петри. Желатин тверд, чашка Петри комнатной температуры - все готово к продолжению эксперимента! А что дальше по плану? Правильно, подсадка культуры бактерий в питательную среду! Все, что потребуется - ватные палочки.

С помощью обычных ватных палочек я взяла пробы с тестируемых поверхностей. Просто провела палочкой там, откуда хотел взять образец микрофлоры, затем провела тем же концом палочки по поверхности питательной среды. Перенесла то, что собрала в чашки Петри. Обязательно подписала, что и откуда растет в каждой конкретной чашке, иначе потом не вспомню. Через пару дней я увидела интересные и ужасные результаты своего эксперимента!

5. Помещение чашек Петри в теплое и темное место. Скажем, на несколько дней, чтобы бактерии могли спокойно расти. Оптимальная температура - 20-37 по Цельсию. Я дала бактериями 7 дней на рост.

6. Запись своих результатов. Через несколько дней я заметила, что в каждой чашке Петри густо колосится что-то свое - бактерии, плесень, грибки и т.д. Я записала свои наблюдения за каждой чашкой и сделал выводы о том, где было больше всего бактерий.

Показатели

Мальчики

Девочки

Количество детей

Абсолютно число колоний на предплечье

Всего колоний

88

34

Результаты исследования: число микроорганизмов (бактерий) на кожи рук мальчиков в 2,5 раза выше, чем у девочек этого возраста.

У мальчиков и девочек выявлены кокковые формы бактерий на ладонях и на коже предплечья. Кокки - шаровидные бактерии. Наиболее известны их представители стафилококки и стрептококки. Кожа - естественная среда обитания стафилококков. Приблизительно 20% бактерий обитает на кожных покровах. На коже рук испытуемых обнаружены колонии золотистого стафилококка.

Стафилококки это бактерии небольших размеров округлой формы. Питаются стафилококки в основном разлагающейся пищей, а также отмирающими тканями организма. На коже и слизистых человека расположено огромное количество стафилококков, однако если человек здоров, а его кожа и слизистые оболочки не повреждены, эти микробы не вызывают никаких болезней. Их агрессивные свойства появляются только в условиях ослабленного организма или если на коже или слизистых оболочках есть повреждения. Стрептококки не обнаружены.

С чем связано, что у мальчиков больше бактерий на коже рук? Я думаю, что это связано с тем, что у мальчиков травмирование кожи рук выше, чем у девочек, а малейшие повреждения кожи достаточны для того, чтобы открыть ворота стафилококковой инфекции. Также мальчики хуже соблюдают гигиенические нормы.

Вывод: метод отпечатков на чашки Петри позволяет наглядно показать и изучить бактерии, обитающие на коже рук человека. Количество и характер бактерий, живущих на коже человека, зависит от состояния организма и факторов внешней и внутренней среды, которые оказывают непосредственное влияние на состояние кожи.

Заключение

Проведённые мною исследования доказывают, что у любого человека на коже можно обнаружить бактерии. А вот количество бактерий напрямую зависит от того, какой образ жизни ведёт человек и как он соблюдает правила личной гигиены. Как отмечает академик В. И. Покровский в «Популярной медицинской энциклопедии», стафилококки и стрептококки, обитающие на поверхности кожи здоровых людей, при определенных условиях приобретают способность вызывать гнойничковые заболевания.

Установлено, что приблизительно 80 % инфекционных болезней передаются контактным способом. Центры контроля и профилактики заболеваний предоставляют следующую информацию: 36 000 человек умирает от гриппа и подобных гриппу болезней ежегодно, поэтому лучшая защита для нас - частое мытье рук. Мытье рук перед едой, после посещения туалета и после прихода с улицы должны стать обязательными условиями личной гигиены. Использование средств гигиены значительно уменьшает количество микроорганизмов на поверхности кожи человека. Согласно литературным источникам во время мытья кожи удаляется до 1,5 млрд. микробов с ее поверхности.

Поэтому соблюдение правил личной гигиены, у каждого человека эт должно стать его осознанной потребностью.

Список литературы

Покровский В. И. Популярная медицинская энциклопедия. М.: Советская энциклопедия, 1991.

Брехман И. И. Валеология - наука о здоровье. М.: 1990.

Энциклопедия домашней медицины. М.: ЗАО Издательство Центрполиграф: СПБ: Колита-2, 2002.

Пономарёва И.Н., Корнилова О.А. Биология 6 класс. М.: Вентана-Граф, 2011.

Фролов М. Ю. Помоги себе сам человек. Донецк: «Донеччина» , 2004.

Приложение

Подготовка чашек Петри и питательной среды


Посадка бактерий в чашку Петри

Результаты




Результаты подсчётов представлены в таблице.

Показатели

Мальчики

Девочки

Количество детей

Абсолютно число колоний на ладони

Абсолютно число колоний на предплечье

Всего колоний

88

34

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Бактерии окружают нас всюду. Многие из них очень нужны и полезны человеку, а многие наоборот, вызывают страшные заболевания.
Знаете ли Вы, каких форм бывают бактерии? А как они размножаются? А чем питаются? Хотите узнать?
.сайт) поможет Вам найти в этой статье.

Формы и размеры бактерий

Большинство бактерий – это одноклеточные организмы. Они отличаются большим разнообразием форм. В зависимости от формы бактериям даны и названия. Например, бактерии округлой формы называются кокками (всем известные стрептококки и стафилококки), бактерии в виде палочек называются бациллами, псевдомонадами или клостридиями (к бактериям такой формы относится знаменитая туберкулезная палочка или палочка Коха ). Могут бактерии иметь форму спиралек, тогда их имена спирохеты, вибриллы или спириллы . Не так часто, но случаются бактерии в форме звездочек, разных многоугольников или иных геометрических фигур.

Бактерии совсем не велики, их размеры колеблются от половины до пяти микрометров. Самая большая бактерия имеет размер семьсот пятьдесят микрометров. После обнаружения нанобактерий оказалось, что их размеры намного меньше, чем ранее представляли себе ученые. Однако, на сегодняшний день, нанобактерии не слишком хорошо изучены. Некоторые ученые даже сомневаются в их существовании.

Агрегаты и многоклеточные организмы

Бактерии могут прикрепляться друг к другу при помощи слизи, образуя клеточные агрегаты. При этом каждая отдельная бактерия представляет собой самодостаточный организм, жизнедеятельность которого никак не зависит от приклеенных к ней сородичей. Иногда же бывает так, что бактерии приклеиваются для того, чтобы осуществить какую-то общую функцию. Некоторые же бактерии, как правило, нитчатой формы могут образовывать и многоклеточные организмы.

Как они передвигаются?

Есть бактерии, которые сами не в состоянии передвигаться, но есть и такие, которые снабжены специальными устройствами для передвижения. Одни бактерии передвигаются при помощи жгутиков, а другие умеют скользить. Каким образом бактерии скользят, пока не до конца понятно. Есть мнение, что бактерии выделяют специальную слизь, которая облегчает скольжение. А еще есть бактерии, которые умеют «нырять». Для того чтобы опуститься в глубину какой-либо жидкой среды, такой микроорганизм может менять свою плотность. Чтобы бактерия начала движение в каком-то направлении, она должна получить раздражение.

Питание

Есть бактерии, которые могут питаться лишь органическими соединениями, а есть такие, которые могут перерабатывать неорганику в органику и уже после этого использовать для собственных нужд. Энергию бактерии получают тремя способами: с использованием дыхания, брожения или фотосинтеза.

Размножение

По поводу размножения бактерий можно сказать, что он тоже не отличается однородностью. Есть бактерии, которые не делятся на полы и размножаются простым делением или почкованием. Некоторые цианобактерии обладают способностью к множественному делению, то есть за один прием они могут выдать до тысячи «новорожденных» бактерий. Есть и бактерии, которые размножаются половым способом. Конечно же, у них все это происходит очень примитивно. Но при этом две бактерии передают новой клетке свои генетические данные – это главная особенность полового размножения.

Бактерии, несомненно, заслуживают Вашего внимания не только потому, что вызывают множество болезней. Эти микроорганизмы были первыми живыми существами, которые населили нашу планету. История бактерий на Земле насчитывает почти четыре миллиарда лет! Самыми древними из существующих на сегодняшний день являются цианобактерии, они появились три с половиной миллиарда лет назад.

Испытать на себе полезные свойства бактерий Вы можете благодаря специалистам корпорации Тяньши, которые разработали для Вас



План:

    Введение
  • 1 Термин
  • 2 История изучения
  • 3 Строение
    • 3.1 Строение протопласта
    • 3.2 Клеточная оболочка и поверхностные структуры
    • 3.3 Размеры
    • 3.4 Многоклеточность у бактерий
  • 4 Способы передвижения и раздражимость
  • 5 Метаболизм
    • 5.1 Конструктивный метаболизм
    • 5.2 Энергетический метаболизм
    • 5.3 Типы жизни
  • 6 Размножение и устройство генетического аппарата
    • 6.1 Размножение бактерий
    • 6.2 Генетический аппарат
    • 6.3 Горизонтальный перенос генов
  • 7 Клеточная дифференциация
    • 7.1 Образование покоящихся форм
    • 7.2 Другие типы морфологически дифференцированных клеток
  • 8 Классификация
  • 9 Происхождение, эволюция, место в развитии жизни на Земле
  • 10 Экология
    • 10.1 Экологические и биосферные функции
    • 10.2 Патогенные бактерии
    • 10.3 Бактерии в мутуалистических отношениях с другими организмами
    • 10.4 Бактерии и человек
    • 10.5 Бактерии в повседневной жизни
  • Примечания
    Литература

Введение

Бакте́рии (эубактерии (Eubacteria ), др.-греч. βακτήριον - палочка) - домен (надцарство) прокариотных (безъядерных) микроорганизмов, чаще всего одноклеточных. К настоящему времени описано около десяти тысяч видов бактерий и предполагается, что их существует свыше миллиона, однако само применение понятия вида к бактериям сопряжено с рядом трудностей.

Изучением бактерий занимается раздел микробиологии - бактериология.


1. Термин

До конца 1970-х годов термин «бактерия» был синонимом прокариотов, но в 1977 году на основании данных молекулярной биологии прокариоты были разделены на домены архебактерий и эубактерий . Впоследствии, чтобы подчеркнуть различия между ними, они были переименованы в архей и бактерий соответственно. Хотя до сих пор под бактериями часто понимают всех прокариотов , в данной статье описаны лишь эубактерии. Однако, эти две группы схожи, и многие положения статьи справедливы также для архей - в подобных случаях используется термин «прокариоты» или сочетание «бактерии и археи».

В экологических и микробиоценотических исследованиях под бактериями часто понимают лишь нефотосинтезирующие немицелиальные прокариоты, противопоставляя их по функциям актиномицетам и цианобактериям.


2. История изучения

Микроскоп 1751 года

Впервые бактерий увидел в оптический микроскоп и описал в 1676 году голландский натуралист Антони ван Левенгук. Как и всех микроскопических существ, он назвал их «анималькули».

Название «бактерии» ввёл в употребление в 1828 году Христиан Эренберг.

В 1850-х годах Луи Пастер положил начало изучению физиологии и метаболизма бактерий, а также открыл их болезнетворные свойства.

Дальнейшее развитие медицинская микробиология получила в трудах Роберта Коха, которым были сформулированы общие принципы определения возбудителя болезни (постулаты Коха). В 1905 году он был удостоен Нобелевской премии за исследования туберкулёза.

Основы общей микробиологии и изучения роли бактерий в природе заложили М. В. Бейеринк и С. Н. Виноградский.

Изучение строения бактериальной клетки началось с изобретением электронного микроскопа в 1930-е. В 1937 году Э. Чаттон предложил делить все организмы по типу клеточного строения на прокариот и эукариот, и в 1961 году Стейниер и Ван Ниль окончательно оформили это разделение. Развитие молекулярной биологии привело к открытию в 1977 году К. Вёзе коренных различий и среди самих прокариот: между бактериями и археями.


3. Строение

Схема строения грамположительной бактерии: A - пили, B - рибосомы, C - капсула, D - слой пептидогликана, E - жгутик, F - цитозоль, G - запасные вещества, H - плазмида, I - нуклеоид, J - цитоплазматическая мембрана

Подавляющее большинство бактерий (за исключением актиномицетов и нитчатых цианобактерий) одноклеточны. По форме клеток они могут быть округлыми (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты), реже - звёздчатыми, тетраэдрическими, кубическими, C- или O-образными. Формой определяются такие способности бактерий, как прикрепление к поверхности, подвижность, поглощение питательных веществ. Отмечено, например, что олиготрофы, то есть бактерии, живущие при низком содержании питательных веществ в среде, стремятся увеличить отношение поверхности к объёму, например, с помощью образования выростов (т. н. простек).

Из обязательных клеточных структур выделяют три:

  • нуклеоид
  • рибосомы
  • цитоплазматическая мембрана (ЦПМ)

С внешней стороны от ЦПМ находятся несколько слоёв (клеточная стенка, капсула, слизистый чехол), называемых клеточной оболочкой , а также поверхностные структуры (жгутики, ворсинки). ЦПМ и цитоплазму объединяют вместе в понятие протопласт .


3.1. Строение протопласта

ЦПМ ограничивает содержимое клетки (цитоплазму) от внешней среды. Гомогенная фракция цитоплазмы, содержащая набор растворимых РНК, белков, продуктов и субстратов метаболических реакций, названа цитозолем . Другая часть цитоплазмы представлена различными структурными элементами.

Одним из основных отличий клетки бактерий от клетки эукариот является отсутствие ядерной мембраны и, строго говоря, отсутствие вообще внутрицитоплазматических мембран, не являющихся производными ЦПМ. Однако у разных групп прокариот (особенно часто у грамположительных бактерий) имеются локальные впячивания ЦПМ - мезосомы, выполняющие в клетке разнообразные функции и разделяющие её на функционально различные части. У многих фотосинтезирующих бактерий существует развитая сеть производных от ЦПМ фотосинтетических мембран. У пурпурных бактерий они сохранили связь с ЦПМ, легко обнаруживаемую на срезах под электронным микроскопом, у цианобактерий эта связь либо трудно обнаруживается, либо утрачена в процессе эволюции. В зависимости от условий и возраста культуры фотосинтетические мембраны образуют различные структуры - везикулы, хроматофоры, тилакоиды.

Вся необходимая для жизнедеятельности бактерий генетическая информация содержится в одной ДНК (бактериальная хромосома), чаще всего имеющей форму ковалентно замкнутого кольца (линейные хромосомы обнаружены у Streptomyces и Borrelia ). Она в одной точке прикреплена к ЦПМ и помещается в структуре, обособленной, но не отделённой мембраной от цитоплазмы, и называемой нуклеоид . ДНК в развёрнутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, то есть практически все прокариоты гаплоидны, хотя в определённых условиях одна клетка может содержать несколько копий своей хромосомы, а Burkholderia cepacia имеет три разных кольцевых хромосомы (длиной 3,6; 3,2 и 1,1 млн пар нуклеотидов). Рибосомы прокариот также отличны от таковых у эукариот и имеют константу седиментации 70 S (80 S у эукариот).

Помимо этих структур, в цитоплазме также могут находиться включения запасных веществ.


3.2. Клеточная оболочка и поверхностные структуры

Клеточная стенка - важный структурный элемент бактериальной клетки, однако необязательный. Искусственным путём были получены формы с частично или полностью отсутствующей клеточной стенкой (L-формы), которые могли существовать в благоприятных условиях, однако иногда утрачивали способность к делению. Известна также группа природных не содержащих клеточной стенки бактерий - микоплазм.

У бактерий существует два основных типа строения клеточной стенки, свойственных грамположительным и грамотрицательным видам.

Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщиной 20-80 нм, построенный в основном из пептидогликана с меньшим количеством тейхоевых кислот и небольшим количеством полисахаридов, белков и липидов (так называемый липополисахарид). В клеточной стенке имеются поры диаметром 1-6 нм, которые делают её проницаемой для ряда молекул.

У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2-3 нм. Он окружён наружной мембраной, имеющей, как правило, неровную, искривлённую форму. Между ЦПМ, слоем пептидогликана и внешней мембраной имеется пространство, называемое периплазматическим , и заполненное раствором, включающим в себя транспортные белки и ферменты.

С внешней стороны от клеточной стенки может находиться капсула - аморфный слой, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру. Однако между этими тремя идеализированными случаями есть множество переходных форм.

Бактериальных жгутиков может быть от 0 до 1000. Возможны как варианты расположения одного жгутика у одного полюса (монополярный монотрих), пучка жгутиков у одного (монополярный перитрих или лофотрихиальное жгутикование) или двух полюсов (биполярный перитрих или амфитрихиальное жгутикование), так и многочисленные жгутики по всей поверхности клетки (перитрих). Толщина жгутика составляет 10-20 нм, длина - 3-15 мкм. Его вращение осуществляется против часовой стрелки с частотой 40-60 об/с.

Помимо жгутиков, среди поверхностных структур бактерий необходимо назвать ворсинки. Они тоньше жгутиков (диаметр 5-10 нм, длина до 2 мкм) и необходимы для прикрепления бактерии к субстрату, принимают участие в транспорте метаболитов, а особые ворсинки - F-пили, нитевидные образования, более тонкие и короткие (3-10 нм × 0,3-10 мкм ), чем жгутики, - необходимы клетке-донору для передачи реципиенту ДНК при конъюгации.


3.3. Размеры

Bacillus subtilis после окрашивания по Граму. Серые овальные структуры - эндоспоры

Размеры бактерий в среднем составляют 0,5-5 мкм . Escherichia coli , например, имеет размеры 0,3-1 на 1-6 мкм , Staphylococcus aureus - диаметр 0,5-1 мкм , Bacillus subtilis - 0,75 на 2-3 мкм . Крупнейшей из известных бактерий является Thiomargarita namibiensis , достигающая размера в 750 мкм (0,75 мм ). Второй является Epulopiscium fishelsoni , имеющая диаметр 80 мкм и длину до 700 мкм и обитающая в пищеварительном тракте хирурговой рыбы Acanthurus nigrofuscus . Achromatium oxaliferum достигает размеров 33 на 100 мкм , Beggiatoa alba - 10 на 50 мкм . Спирохеты могут вырастать в длину до 250 мкм при толщине 0,7 мкм . В то же время к бактериям относятся самые мелкие из имеющих клеточное строение организмов. Mycoplasma mycoides имеет размеры 0,1-0,25 мкм , что соответствует размеру крупных вирусов, например, табачной мозаики, коровьей оспы или гриппа. По теоретическим подсчётам, сферическая клетка диаметром менее 0,15-0,20 мкм становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не могут поместиться все необходимые биополимеры и структуры в достаточном количестве.

Staphylococcus aureus в том же увеличении

Однако были описаны нанобактерии, имеющие размеры меньше «допустимых» и сильно отличающиеся от обычных бактерий. Они, в отличие от вирусов, способны к самостоятельному росту и размножению (чрезвычайно медленным). Они пока мало изучены, и их живая природа ставится под сомнение.

При линейном увеличении радиуса клетки её поверхность возрастает пропорционально квадрату радиуса, а объём - пропорционально кубу, поэтому у мелких организмов отношение поверхности к объёму выше, чем у более крупных, что означает для первых более активный обмен веществ с окружающей средой. Метаболическая активность, измеренная по разным показателям, на единицу биомассы у мелких форм выше, чем у крупных. Поэтому небольшие даже для микроорганизмов размеры дают бактериям и археям преимущества в скорости роста и размножения по сравнению с более сложноорганизованными эукариотами и определяют их важную экологическую роль.


3.4. Многоклеточность у бактерий

Многоклеточная нитчатая цианобактерия Anabaena flosaquae

Одноклеточные формы способны осуществлять все функции, присущие организму, независимо от соседних клеток. Многие одноклеточные прокариоты склонны к образованию клеточных агрегатов, часто скреплённых выделяемой ими слизью, эти агрегаты получили название биоплёнки. Чаще всего это лишь случайное объединение отдельных организмов, но в ряде случаев временное объединение связано с осуществлением определённой функции, например, формирование плодовых тел миксобактериями делает возможным развитие цист, при том что единичные клетки не способны их образовывать. Подобные явления наряду с образованием одноклеточными эубактериями морфологически и функционально дифференцированных клеток - необходимые предпосылки для возникновения у них истинной многоклеточности.

Многоклеточный организм должен отвечать следующим условиям:

  • его клетки должны быть агрегированы,
  • между клетками должно осуществляться разделение функций,
  • между агрегированными клетками должны устанавливаться устойчивые специфические контакты.

Многоклеточность у прокариот известна, наиболее высокоорганизованные многоклеточные организмы принадлежат к группам цианобактерий и актиномицетов. У нитчатых цианобактерий описаны структуры в клеточной стенке, обеспечивающие контакт двух соседних клеток - микроплазмодесмы . Показана возможность обмена между клетками веществом (красителем) и энергией (электрической составляющей трансмембранного потенциала). Некоторые из нитчатых цианобактерий содержат помимо обычных вегетативных клеток функционально дифференцированные: акинеты и гетероцисты. Последние осуществляют фиксацию азота и интенсивно обмениваются метаболитами с вегетативными клетками.


4. Способы передвижения и раздражимость

Многие бактерии подвижны. Имеется несколько принципиально различных типов движения бактерий. Наиболее распространено движение при помощи жгутиков: одиночных бактерий и бактериальных ассоциаций (роение). Частным случаем этого также является движение спирохет, которые извиваются благодаря аксиальным нитям, близким по строению к жгутикам, но расположенным в периплазме. Другим типом движения является скольжение бактерий, не имеющих жгутиков, по поверхности твёрдых сред. Его механизм пока недостаточно изучен; предполагается участие в нём выделения слизи (проталкивание клетки) и находящихся в клеточной стенке фибриллярных нитей, вызывающих «бегущую волну» по поверхности клетки. Наконец, бактерии могут всплывать и погружаться в жидкости, меняя свою плотность, наполняя газами или опустошая аэросомы.

Бактерии активно передвигаются в направлении, определяемом теми или иными раздражителями. Это явление получило название таксис.


5. Метаболизм

5.1. Конструктивный метаболизм

За исключением некоторых специфических моментов биохимические пути, по которым осуществляется синтез белков, жиров, углеводов и нуклеотидов, у бактерий схожи с таковыми у других организмов. Однако по числу возможных вариантов этих путей и, соответственно, по степени зависимости от поступления органических веществ извне они различаются.

Часть из них может синтезировать все необходимые им органические молекулы из неорганических соединений (автотрофы), другие же требуют готовых органических соединений, которые они способны лишь трансформировать (гетеротрофы).

Удовлетворять потребности в азоте бактерии могут как за счёт его органических соединений (подобно гетеротрофным эукариотам), так и за счёт молекулярного азота (как и некоторые археи). Большинство бактерий используют для синтеза аминокислот и других азотсодержащих органических веществ неорганические соединения азота: аммиак (поступающий в клетки в виде ионов аммония), нитриты и нитраты (которые предварительно восстанавливаются до ионов аммония). Фосфор они способны усваивать в виде фосфата, серу - в виде сульфата или реже сульфида.


5.2. Энергетический метаболизм

Способы же получения энергии у бактерий отличаются своеобразием. Существует три вида получения энергии (и все три известны у бактерий): брожение, дыхание и фотосинтез.

Брожение - серия окислительно-восстановительных реакций, в ходе которых образуются нестабильные молекулы, с которых остаток фосфорной кислоты переносится на АДФ с образованием АТФ (субстратное фосфорилирование). При этом возможно внутримолекулярное окисление и восстановление.

Дыхание - окисление восстановленных соединений с переносом электрона через локализованную в мембране дыхательную электронтранспортную цепь, создающую трансмембранный градиент протонов, при использовании которого синтезируется АТФ (окислительное фосфорилирование). В то время как эукариоты в конечном итоге почти всегда «сбрасывают» электрон на кислород (лишь в редких случаях акцептором электронов могут служить нитраты), бактерии могут использовать вместо него окисленные органические и минеральные соединения (фумарат, углекислый газ, сульфат-анион, нитрат-анион и др.; см. анаэробное дыхание), а вместо окисляемого органического субстрата использовать минеральный (водород, аммиак, сероводород и др.), что часто бывает сопряжено с автотрофной фиксацией CO 2 (см. хемосинтез).

Фотосинтез бактерий может быть двух типов - бескислородный, с использованием бактериохлорофилла (зелёные, пурпурные и гелиобактерии) и кислородный с использованием хлорофилла (цианобактерии (хлорофилл a), прохлорофиты (a и b)). Цианобактерии, глаукоцистофитовые, красные и криптофитовые водоросли - единственные фотосинтезирующие организмы, содержащие фикобилипротеины. У архей встречается бесхлорофилльный фотосинтез с участием бактериородопсина (правда, энергия света используется при этом не для фиксации CO 2 , а непосредственно для синтеза АТФ, так что в строгом смысле это не фотосинтез, а фотофосфорилирование).

Бактерии, осуществляющие только бескислородный фотосинтез, не имеют фотосистемы II. Во-первых, это пурпурные и зелёные нитчатые бактерии, у которых функционирует только циклический путь переноса электронов, направленный на создание трансмембранного протонного градиента, за счёт которого синтезируется АТФ (фотофосфорилирование), а также восстанавливается НАД(Ф) + , использующийся для ассимиляции CO 2 . Во-вторых, это зелёные серные и гелиобактерии, имеющие и циклический, и нециклический транспорт электронов, что делает возможным прямое восстановление НАД(Ф) + . В качестве донора электрона, заполняющего «вакансию» в молекуле пигмента в бескислородном фотосинтезе используются восстановленные соединения серы (молекулярная, сероводород, сульфит) или молекулярный водород.

Существуют также бактерии с весьма специфическим энергетическим метаболизмом. Так, в октябре 2008 года в журнале Science появилось сообщение об обнаружении экосистемы, состоящей из представителей одного единственного ранее неизвестного вида бактерии - Desulforudis audaxviator , которые получают энергию для своей жизнедеятельности из химических реакций с участием водорода, образующегося в результате распада молекул воды под воздействием радиации залегающих вблизи нахождения колонии бактерий урановых руд . Некоторые колонии бактерий, обитающие на дне океана, используют для передачи энергии своим собратьям электрический ток.


5.3. Типы жизни

Объединить типы конструктивного и энергетического метаболизма можно в следующей таблице:

Способы существования живых организмов (матрица Львова)
Источник энергии Донор электрона Источник углерода Название способа существования Представители
ОВР Неорганические соединения Углекислый газ Хемолитоавтотрофия Нитрифицирующие, тионовые, ацидофильные железобактерии
Органические соединения Хемолитогетеротрофия Метанообразующие архебактерии, водородные бактерии
Органические вещества Углекислый газ Хемоорганоавтотрофия Факультативные метилотрофы, окисляющие муравьиную кислоту бактерии
Органические соединения Хемоорганогетеротрофия Большинство прокариот, из эукариот: животные, грибы, человек
Свет Неорганические соединения Углекислый газ Фотолитоавтотрофия Цианобактерии, пурпурные, зелёные бактерии, из эукариот: растения
Органические соединения Фотолитогетеротрофия Некоторые цианобактерии, пурпурные, зелёные бактерии
Органические вещества Углекислый газ Фотоорганоавтотрофия Некоторые пурпурные бактерии
Органические вещества Фотоорганогетеротрофия Галобактерии, некоторые цианобактерии, пурпурные, зелёные бактерии

Из таблицы видно, что разнообразие типов питания прокариот гораздо больше, чем у эукариот (последние способны лишь к хемоорганогетеротрофии и фотолитоавтотрофии).


6. Размножение и устройство генетического аппарата

6.1. Размножение бактерий

Колонии бактерий на твёрдой агаризованной среде в чашке Петри

Некоторые бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием. Для одной группы одноклеточных цианобактерий описано множественное деление (ряд быстрых последовательных бинарных делений, приводящий к образованию от 4 до 1024 новых клеток). Для обеспечения необходимой для эволюции и приспособления к изменчивой окружающей среде пластичности генотипа у них существуют иные механизмы.

При делении большинство грамположительных бактерий и нитчатых цианобактерий синтезируют поперечную перегородку от периферии к центру при участии мезосом. Грамотрицательные бактерии делятся путём перетяжки: на месте деления обнаруживается постепенно увеличивающееся искривление ЦПМ и клеточной стенки внутрь. При почковании на одном из полюсов материнской клетки формируется и растёт почка, материнская клетка проявляет признаки старения и обычно не может дать более 4 дочерних. Почкование имеется у разных групп бактерий и, предположительно, возникало несколько раз в процессе эволюции.

У бактерий наблюдается и половое размножение, но в самой примитивной форме. Половое размножение бактерий отличается от полового размножения эукариот тем, что у бактерий не образуются гаметы и не происходит слияния клеток. Однако главнейшее событие полового размножения, а именно обмен генетическим материалом, происходит и в этом случае. Этот процесс называется генетической рекомбинацией. Часть ДНК (очень редко вся ДНК) клетки-донора переносится в клетку-реципиент, ДНК которой генетически отличается от ДНК донора. При этом перенесённая ДНК замещает часть ДНК реципиента. В процессе замещения ДНК участвуют ферменты, расщепляющие и вновь соединяющие цепи ДНК. При этом образуется ДНК, которая содержит гены обеих родительских клеток. Такую ДНК называют рекомбинантной. У потомства или рекомбинантов, наблюдается заметное разнообразие признаков, вызванное смещением генов. Такое разнообразие признаков очень важно для эволюции и является главным преимуществом полового размножения. Известны 3 способа получения рекомбинантов. Это - в порядке их открытия - трансформация, конъюгация и трансдукция.


6.2. Генетический аппарат

Гены, необходимые для жизнедеятельности и определяющие видовую специфичность, расположены у бактерий чаще всего в единственной ковалентно замкнутой молекуле ДНК - хромосоме (иногда для обозначения бактериальных хромосом, чтобы подчеркнуть их отличия от эукариотических, используют термин генофор (англ. genophore )). Область, где локализована хромосома, называется нуклеоид и не окружена мембраной. В связи с этим новосинтезированная мРНК сразу доступна для связывания с рибосомами, а транскрипция и трансляция сопряжены.

Отдельная клетка может содержать лишь 80 % от суммы генов, имеющихся во всех штаммах её вида (т. н. «коллективный геном»).

Помимо хромосомы, в клетках бактерий часто находятся плазмиды - также замкнутые в кольцо ДНК, способные к независимой репликации. Они могут быть настолько велики, что становятся неотличимы от хромосомы, но содержат дополнительные гены, необходимые лишь в специфических условиях. Специальные механизмы распределения обеспечивают сохранение плазмиды в дочерних клетках так что они теряются с частотой менее 10 −7 в пересчёте на клеточный цикл. Специфичность плазмид может быть весьма разнообразной: от присутствия лишь у одного вида-хозяина до плазмиды RP4, встречающейся почти у всех грамотрицательных бактерий. В плазмидах кодируются механизмы устойчивости к антибиотикам, разрушения специфических веществ и т. д., nif-гены, необходимые для азотфиксации также находятся в плазмидах. Ген плазмиды может включаться в хромосому с частотой около 10 −4 - 10 −7 .

В ДНК бактерий, как и в ДНК других организмов, выделяются транспозоны - мобильные сегменты, способные перемещаться из одной части хромосомы к другой, или во внехромосомные ДНК. В отличие от плазмид, они неспособны к автономной репликации, и содержат IS-сегменты - участки, которые кодируют свой перенос внутри клетки. IS-сегмент может выступать в роли отдельной транспозоны.


6.3. Горизонтальный перенос генов

У прокариот может происходить частичное объединение геномов. При конъюгации клетка-донор в ходе непосредственного контакта передаёт клетке-реципиенту часть своего генома (в некоторых случаях весь). Участки ДНК донора могут обмениваться на гомологичные участки ДНК реципиента. Вероятность такого обмена значима только для бактерий одного вида.

Аналогично бактериальная клетка может поглощать и свободно находящуюся в среде ДНК, включая её в свой геном в случае высокой степени гомологии с собственной ДНК. Данный процесс носит название трансформация. В природных условиях протекает обмен генетической информацией при помощи умеренных фагов (трансдукция). Кроме этого, возможен перенос нехромосомных генов при помощи плазмид определённого типа, кодирующих этот процесс, процесс обмена другими плазмидами и передачи транспозон.

При горизонтальном переносе новых генов не образуется (как то имеет место при мутациях), однако осуществляется создание разных генных сочетаний. Это важно по той причине, что естественный отбор действует на всю совокупность признаков организма.


7. Клеточная дифференциация

Клеточная дифференциация - изменение набора белков (обычно также проявляющееся в изменении морфологии) при неизменном генотипе.

7.1. Образование покоящихся форм

Расположение эндоспор: 1, 4 - центральное, 2, 3, 5 - терминальное, 6 - латеральное.

Образование особо устойчивых форм с замедленным метаболизмом, служащих для сохранения в неблагоприятных условиях и распространения (реже для размножения) является наиболее распространённым видом дифференциации у бактерий. Наиболее устойчивыми из них являются эндоспоры, формируемые представителями Bacillus , Clostridium , Sporohalobacter , Anaerobacter (образует 7 эндоспор из одной клетки и может размножаться с их помощью ) и Heliobacterium . Образование этих структур начинается как обычное деление и на первых стадиях может быть превращено в него некоторыми антибиотиками. Эндоспоры многих бактерий способны выдерживать 10-минутное кипячение при 100 °C, высушивание в течение 1000 лет и, по некоторым данным, сохраняются в почвах и горных породах в жизнеспособном состоянии миллионы лет.

Менее устойчивыми являются экзоспоры, цисты (Azotobacter , скользящие бактерии и др.), акинеты (цианобактерии) и миксоспоры (миксобактерии).


7.2. Другие типы морфологически дифференцированных клеток

Актиномицеты и цианобактерии образуют дифференцированные клетки, служащие для размножения (споры, а также гормогонии и баеоциты соответственно). Необходимо также отметить структуры, подобные бактероидам клубеньковых бактерий и гетероцистам цианобактерий, служащие для защиты нитрогеназы от воздействия молекулярного кислорода.


8. Классификация

Наибольшую известность получила фенотипическая классификация бактерий, основанная на строении их клеточной стенки, включённая, в частности, в IX издание Определителя бактерий Берги (1984-1987). Крупнейшими таксономическими группами в ней стали 4 отдела: Gracilicutes (грамотрицательные), Firmicutes (грамположительные), Tenericutes (микоплазмы; отдел с единственным классом Mollicutes) и Mendosicutes (археи).

В последнее время всё большее развитие получает филогенетическая классификация бактерий (и именно она используется в Википедии), основанная на данных молекулярной биологии. Одним из первых методов оценки родства по сходству генома был предложенный ещё в 1960-х годах метод сравнения содержания гуанина и цитозина в ДНК. Хотя одинаковые значения их содержания и не могут дать никакой информации об эволюционной близости организмов, их различия на 10 % означают, что бактерии не принадлежат к одному роду. Другим методом, произведшим в 1970-е настоящую революцию в микробиологии, стал анализ последовательности генов в 16s рРНК, который позволил выделить несколько филогенетических ветвей эубактерий и оценить связи между ними. Для классификации на уровне вида применяется метод ДНК-ДНК гибридизации. Анализ выборки хорошо изученных видов позволяет считать что 70 % уровень гибридизации характеризует один вид, 10-60 % - один род, менее 10 % - разные рода.

Филогенетическая классификация отчасти повторяет фенотипическую, так, группа Gracilicutes присутствует и в той и в другой. В то же время систематика грамотрицательных бактерий была полностью пересмотрена, архебактерии и вовсе выделены в самостоятельный таксон высшего ранга, часть таксономических групп разбита на части и перегруппирована, в одни группы объединены организмы с совершенно разными экологическими функциями, что вызывает ряд неудобств и недовольство части научного сообщества. Объектом нареканий становится и то, что проводится фактически классификация молекул, а не организмов.


9. Происхождение, эволюция, место в развитии жизни на Земле

Докембрийский строматолит

Бактерии наряду с археями были одними из первых живых организмов на Земле, появившись около 3,9-3,5 млрд лет назад. Эволюционные взаимоотношения между этими группами ещё до конца не изучены, есть как минимум три основные гипотезы : Н. Пэйс предполагает наличие у них общего предка протобактерии, Заварзин считает архей тупиковой ветвью эволюции эубактерий, освоившей экстремальные местообитания; наконец, по третьей гипотезе археи - первые живые организмы, от которых произошли бактерии.

Эукариоты возникли в результате симбиогенеза из бактериальных клеток намного позже: около 1,9-1,3 млрд лет назад. Для эволюции бактерий характерен ярко выраженный физиолого-биохимический уклон: при относительной бедности жизненных форм и примитивном строении, они освоили практически все известные сейчас биохимические процессы. Прокариотная биосфера имела уже все существующие сейчас пути трансформации вещества. Эукариоты, внедрившись в неё, изменили лишь количественные аспекты их функционирования, но не качественные, на многих этапах циклов элементов бактерии по-прежнему сохраняют монопольное положение.

Одними из древнейших бактерий являются цианобактерии. В породах, образованных 3,5 млрд лет назад, обнаружены продукты их жизнедеятельности - строматолиты, бесспорные свидетельства существования цианобактерий относятся ко времени 2,2-2,0 млрд лет назад. Благодаря им в атмосфере начал накапливаться кислород, который 2 млрд лет назад достиг концентраций, достаточных для начала аэробного дыхания. К этому времени относятся образования, свойственные облигатно аэробной Metallogenium .

Появление кислорода в атмосфере (кислородная катастрофа) нанесло серьёзный удар по анаэробным бактериям. Они либо вымирают, либо уходят в локально сохранившиеся бескислородные зоны. Общее видовое разнообразие бактерий в это время сокращается.

Предполагается, что из-за отсутствия полового процесса, эволюция бактерий идёт по совершенно иному механизму, нежели у эукариот . Постоянный горизонтальный перенос генов приводит к неоднозначностям в картине эволюционных связей, эволюция протекает крайне медленно (а, возможно, с появлением эукариот и вовсе прекратилась), зато в изменяющихся условиях происходит быстрое перераспределение генов между клетками при неизменном общем генетическом пуле.


10. Экология

Многие бактерии вызывают болезни человека, животных и растений, другие играют исключительно важную роль в функционировании биосферы, например, лишь бактерии способны ассимилировать азот атмосферы. Бактерии являются одними из наиболее просто устроенных живых организмов (кроме вирусов). Полагают, что они - первые организмы, появившиеся на Земле.

10.1. Экологические и биосферные функции

Количество клеток прокариот оценивается в (4-6)×10 30 , их суммарная биомасса составляет 350-550 млрд т. , в ней запасено 60-100 % от углерода всех растений , а запас азота и фосфора в виду их большего относительного содержания в бактериях существенно превосходит запас этих элементов в фитомассе Земли. В то же время бактерии характеризуются коротким жизненным циклом и высокой скоростью обновления биомассы. Уже на основании этого можно оценить их вклад в функционирование основных биогеохимических циклов.

Бактерии способны расти как в присутствии свободного кислорода (аэробы), так и при его отсутствии (анаэробы). Участвуют в формировании структуры и плодородия почв, в образовании полезных ископаемых и разрушении растительной и животной мортмассы; поддерживают запасы углекислого газа и кислорода в атмосфере.


10.2. Патогенные бактерии

В XIV веке от пандемии бубонной чумы (чёрная смерть) скончалось 75 млн человек , в том числе 15-35 млн в Европе, что составило 1/4-1/2 её населения.

Опасность бактериальных заболеваний была сильно снижена в конце XIX века с изобретением метода вакцинации, а в середине XX века с открытием антибиотиков.


10.3. Бактерии в мутуалистических отношениях с другими организмами

Многие бактерии находятся в симбиотических, в том числе в мутуалистических отношениях с другими организмами. Растения, например, выделяют значительную долю созданной в процессе фотосинтеза органики поверхностью корней. Преобразованная таким образом часть почвы (ризосфера) благоприятна для развития бактерий, в том числе азотфиксирующих. Увеличение интенсивности азотфиксации (называемой в таком случае ассоциативной) улучшает условия минерального питания растений. Бактерии-азотфиксаторы обитают также в клубеньках бобовых и других групп растений. В симбиозе со многими морскими животными (прежде всего, губками и асцидиями, а также с некоторыми растениями (например, водным папортником азолоой) и грибами (в составе лишайников) живут и цианобактерии. Хемоавтотрофные бактерии живут в симбиозе с рифтиями и многими другими видами беспозвоночных и протистов, населяющих сообщества гидротерм и сообщества тиобиоса. Есть и много других примеров симбиоза бактерий с самыми разными группами организмов.

Бактерии населяют желудочно-кишечный тракт животных и человека и необходимы для нормального пищеварения. Особенно они важны для травоядных, которые питаются не столько растительной пищей, сколько продуктами её бактериального преобразования, а частично переваривают и самих бактерий.


10.4. Бактерии и человек

Тысячелетиями человек использовал молочнокислых бактерий для производства сыра, йогурта, кефира, уксуса, а также квашения.

В настоящее время разработаны методики по использованию фитопатогенных бактерий в качестве безопасных гербицидов, энтомопатогенных - вместо инсектицидов. Наиболее широкое применение получила Bacillus thuringiensis , выделяющая токсины (Cry-токсины), действующие на насекомых. Помимо бактериальных инсектицидов, в сельском хозяйстве нашли применение бактериальные удобрения.

Бактерии, вызывающие болезни человека, используются как биологическое (бактериологическое) оружие; кроме того, в качестве такого оружия могут использоваться бактериальные токсины.

Благодаря быстрому росту и размножению, а также простоте строения, бактерии активно применяются в научных исследованиях по молекулярной биологии, генетике, генной инженерии и биохимии. Самой хорошо изученной бактерией стала Escherichia coli . Информация о процессах метаболизма бактерий позволила производить бактериальный синтез витаминов, гормонов, ферментов, антибиотиков и др.

Перспективным направлением является обогащение руд с помощью сероокисляющих бактерий, очистка бактериями загрязнённых нефтепродуктами или ксенобиотиками почв и водоёмов.

В кишечнике человека в норме обитает от 300 до 1000 видов бактерий общей массой до 1 кг , а численность их клеток на порядок превосходит численность клеток человеческого организма . Они играют важную роль в переваривании углеводов, синтезируют витамины, вытесняют патогенные бактерии. Можно образно сказать, что микрофлора человека является дополнительным «органом», который отвечает за пищеварение и защиту организма от инфекций.


10.5. Бактерии в повседневной жизни

По данным южнокорейского Бюро защиты прав потребителей , количество бактерий на ручках (без антибактериального покрытия) тележек крупных магазинов достигает 1100 колоний на 10 см² . Второе место занимают компьютерные «мышки» в интернет-кафе (690 колоний на ту же площадь). Ручки кабинок общественных уборных содержат лишь 340 колоний вредных микроорганизмов на 10 см² .

Для того, чтобы уберечься от всех видов микроорганизмов, которые были обнаружены на предметах общественного пользования в ходе исследования, достаточно регулярно мыть руки с мылом.


Примечания

  1. Journey Toward The Center Of The Earth: One-of-a-kind Microorganism Lives All Alone - www.sciencedaily.com/releases/2008/10/081009143708.htm
  2. http://www.akado.com/science/fauna/19033/2008/10/10/bacteria/ - www.akado.com/science/fauna/19033/2008/10/10/bacteria/
  3. По данным статьи журнала Nature (Feb. 24) - www.wired.com/wiredscience/2010/02/electric-ocean-bacteria/
  4. У бактерий нашли электрическую проводку - lenta.ru/news/2010/02/25/energy/. Lenta.ru (25 февраля 2010).
  5. Siunov A, Nikitin D, Suzina N, Dmitriev V, Kuzmin N, Duda V Phylogenetic status of Anaerobacter polyendosporus, an anaerobic, polysporogenic bacterium - ijs.sgmjournals.org/cgi/reprint/49/3/1119.pdf//International Journal of Systematic Bacteriology, 1999, № 49 Pt 3: 1119 - 24.
  6. 1 2 Добрецов Н. Л. О ранних стадиях зарождения и эволюции жизни // Вестник ВОГиС, 2005 г. Том 9, № 1. С. 43-54 pdf - www.bionet.nsc.ru/vogis/pict_pdf/2005/t9_1/43_54.pdf
  7. Добрецов Н. Л. О ранних стадиях зарождения и эволюции жизни // Вестник ВОГиС, 2005. Том 9, № 1. С. 43-54 pdf - www.bionet.nsc.ru/vogis/pict_pdf/2005/t9_1/43_54.pdf
  8. Whitman W. B., Coleman D. C., Wiebe W. J. Prokaryotes: the unseen majority // PNAS Online. 1998. Vol. 95, N 12. P. 6578-6583. - www.pnas.org/cgi/content/full/95/12/6578
  9. Sears CL. A dynamic partnership: Celebrating our gut flora - eebweb.arizona.edu/courses/ecol409_509/searsReview.pdf // Anaerobe, Volume 11, Issue 5, October 2005, Pages 247-251.
  10. LIKAR.INFO / Кишечный дисбиоз в клинике детских инфекционных болезней - www.likar.info/profi/articles/268.html
  11. Ручки магазинных тележек - главный рассадник инфекции - www.newsru.com/world/14feb2006/microb.html. NEWSru (14 февраля 2006).

Литература

  • Гусев М. В., Минеева Л. А. Микробиология. - М .: Изд-во МГУ, 2004. - 448 с.
  • Заварзин Г. А. Лекции по природоведческой микробиологии / Отв. ред. Н. Н. Колотилова; Ин-т микробиологии. - М .: Наука, 2003. - 348 с. - ISBN 5-02-006454-8 .
  • Современная микробиология. Прокариоты: В 2-х томах / Под ред. Й. Ленглера, Г. Древса, Г. Шлегеля.. - М .: Мир, 2005. - ISBN ISBN 5-03-003706-3
  • Жизнь растений. В 6-ти т. - herba.msu.ru/shipunov/school/books/zh_ras1.djvu / Гл. ред. Ал. А. Фёдоров. - М Силикатные бактерии, Домены (биология) .
    Текст доступен по лицензии Creative Commons Attribution-ShareAlike .

Бактерии живут практически везде – в воздухе, в воде, в почве, в живых и мертвых тканях растений и животных. Одни из них приносят пользу человеку, другие нет. Вредные бактерии или, по крайней мере, часть из них знает большинство. Вот некоторые названия, обоснованно вызывающие у нас негативные чувства: сальмонелла, стафилококк, стрептококк, холерный вибрион, чумная палочка. А вот полезные бактерии для человека или названия некоторых из них знают немногие. Перечисление того, какие микроорганизмы полезны, а какие из бактерий вредные, займет не одну страницу. Поэтому рассмотрим только некоторые из названий полезных бактерий.

Микроорганизмы диаметром 1-2 мкм (0,001-0,002 мм) обычно имеют овальную форму, что видно на фото, которая может меняться от сферической до палочкообразной. Представители рода азотобактер живут в слабощелочных и нейтральных почвах по всей планете вплоть до обоих полярных регионов. Также они встречаются в пресных водоемах и в солоноватых болотах. Способны пережидать неблагоприятные условия. Например, в сухой почве эти бактерии могут сохраняться до 24 лет, не теряя жизнеспособности. Азот является одним из необходимых элементов для фотосинтеза растений. Самостоятельно выделять его из воздуха они не умеют. Бактерии рода Azotobacter полезны тем, что аккумулируют азот из воздуха, превращая его в ионы аммония, которые выводятся в почву и легко усваиваются растениями. Кроме того, эти микроорганизмы обогащают почву биологически активными веществами, стимулирующими рост растений, способствуют очищению грунта от тяжелых металлов, в частности, от свинца и ртути. Эти бактерии полезны человеку в таких областях, как:

  1. Сельское хозяйство . Помимо того, что они сами по себе повышают плодородие почвы, их используют для получения биологических азотных удобрений.
  2. Медицина . Способность представителей рода выделять альгиновую кислоту используется для получения лекарств от желудочно-кишечных заболеваний, зависящих от кислотности.
  3. Пищевая промышленность . Уже упомянутая кислота, имеющая название альгиновой, используется в пищевых добавках к кремам, пудингам, мороженому и т.д.

Бифидобактерии

Эти микроорганизмы длиной от 2 до 5 мкм имеют палочкообразную форму, слегка изогнутую, как видно на фото. Основное место их обитания – кишечник. При неблагоприятных условиях бактерии с таким названием быстро погибают. Они чрезвычайно полезны для человека благодаря следующим свойствам:

  • снабжают организм витамином K, тиамином (B1), рибофлавином (B2), никотиновой кислотой (B3), пиридоксином (B6), фолиевой кислотой (B9), аминокислотами и белками;
  • препятствуют развитию болезнетворных микробов;
  • защищают организм от попадания токсинов из кишечника;
  • ускоряют переваривание углеводов;
  • активируют пристеночное пищеварение;
  • помогают всасыванию через стенки кишечника ионов кальция, железа, витамина D.

Если молочная продукция имеет приставку к названию «био» (например, биокефир), это значит, что в ней содержатся живые бифидобактерии. Эти продукты очень полезны, но недолговечны.

В последнее время стали появляться лекарственные препараты с содержанием бифидобактерий. Будьте осторожны при их приеме, так как, несмотря на несомненную пользу этих микроорганизмов, полезность самих препаратов не доказана. Результаты исследований довольно противоречивы.

Молочнокислые бактерии

К группе с таким названием относят более 25 видов бактерий. Они имеют преимущественно палочкообразную, реже – шаровидную форму, как показано на фото. Их размер сильно варьируется (от 0,7 до 8,0 мкм) в зависимости от среды обитания. Живут они на листьях и плодах растений, в молочных продуктах. В человеческом организме они представлены во всем желудочно-кишечном тракте – от рта до прямой кишки. В подавляющем большинстве они совсем не вредные для человека. Эти микроорганизмы защищают наш кишечник от гнилостных и патогенных микробов.
Свою энергию они получают от процесса молочнокислого брожения. Полезные свойства этих бактерий известны человеку давно. Вот лишь некоторые области их применения:

  1. Пищевая промышленность – производство кефира, сметаны, ряженки, сыра; квашение овощей и фруктов; приготовление кваса, теста и т.п.
  2. Сельское хозяйство – брожение силоса (силосование) замедляет развитие плесени и способствует лучшей сохранности корма для животных.
  3. Народная медицина – лечение ран и ожогов. Вот почему солнечные ожоги рекомендуется смазывать сметаной.
  4. Медицина – производство препаратов для восстановления микрофлоры кишечника, женской репродуктивной системы после инфекции; получение антибиотиков и частичного заменителя крови под названием декстран; изготовление препаратов для лечения авитаминозов, желудочно-кишечных заболеваний, для улучшения обменных процессов.

Стрептомицеты

Этот род бактерий состоит почти из 550 видов. В благоприятных условиях они образуют нити диаметром 0,4-1,5 мкм, напоминающие грибной мицелий, как видно по фото. Живут преимущественно в почве. Если вам приходилось когда-нибудь принимать такие лекарственные средства, как эритромицин, тетрациклин, стрептомицин или левомицетин, то вы уже знаете, чем полезны эти бактерии. Они являются производителями (продуцентами) самых разнообразных препаратов, среди которых:

  • противогрибковые;
  • антибактериальные;
  • противоопухолевые.

В промышленном производстве лекарств стрептомицеты используются с сороковых годов прошлого века. Кроме антибиотиков, эти полезные бактерии продуцируют следующие вещества:

Справедливости ради стоит отметить, что не все стрептомицеты одинаково полезны. Некоторые из них вызывают болезнь картофеля (паршу), другие являются причиной различных недугов человека, в том числе заболеваний крови.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Лучшие статьи по теме