Психология. Отношения. Личность. Общение
  • Главная
  • Личность
  • Теорема об ускорениях точек плоской фигуры. Определение ускорений точек плоской фигуры при помощи мцу Определение углового ускорения при плоском движении

Теорема об ускорениях точек плоской фигуры. Определение ускорений точек плоской фигуры при помощи мцу Определение углового ускорения при плоском движении

Мгновенный центр скоростей.

Мгнове́нный центр скоросте́й - при плоскопараллельном движении точка, обладающая следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело.

Для того, чтобы определить положение мгновенного центра скоростей, необходимо знать направления скоростей любых двух различных точек тела, скорости которых не параллельны. Тогда для определения положения мгновенного центра скоростей необходимо провести перпендикуляры к прямым, параллельным линейным скоростям выбранных точек тела. В точке пересечения этих перпендикуляров и будет находиться мгновенный центр скоростей.

В том случае, если векторы линейных скоростей двух различных точек тела параллельны друг другу, и отрезок, соединяющий эти точки, не перпендикулярен векторам этих скоростей, то перпендикуляры к этим векторам также параллельны. В этом случае говорят, что мгновенный центр скоростей находится в бесконечности, и тело движетсямгновенно поступательно.

Если известны скорости двух точек, и эти скорости параллельны друг другу, и кроме того, указанные точки лежат на прямой, перпендикулярной скоростям, то положение мгновенного центра скоростей определяется так, как показано на рис. 2.

Положение мгновенного центра скоростей в общем случае не совпадает с положением мгновенного центра ускорений. Однако в некоторых случаях, например, при чисто вращательном движении, положения этих двух точек могут совпадать.

21.Определение ускорений точек тела.Метод полюса.Понятие о мгновенном центре ускорений .

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

В правой части этого равенства первое слагаемое есть ускорение полюса А , а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A . следовательно,

Значение , как ускорения точки вращающегося твердого тела, определяется как

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки А , принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).

Однако вычисление с помощью параллелограмма, изображен­ного на рис.23, усложняет расчет, так как предварительно надо бу­дет находить значение угла , а затем - угла между векторами и , Поэтому при решении задач удобнее вектор заменять его касательной и нормальной составляющими и пред­ставить в виде



При этом вектор направлен перпендикулярно АМ в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное; вектор всегда направлен от точки М к полюсу А (рис.42). Численно же

Если полюс А движется не прямолинейно, то его ускорение мо­жно тоже представить как сумму касательной и нормальной составляющих, тогда

Рис.41 Рис.42

Наконец, когда точка М движется криволинейно и ее траекто­рия известна, то можно заменить суммой .

Ускорение произвольной точки твёрдого тела, участвующего в плоском движении, можно найти как геометрическую сумму ускорения полюса и ускорения данной точки во вращательном движении вокруг полюса.

Для доказательства этого положения используем теорему сложения ускорений течки в составном движении. Примем за полюс точку . Подвижную систему координат будем перемещать поступательно вместе с полюсом (рис.1.15 а). Тогда относительным движением будет вращение вокруг полюса. Известно, что кориолисово ускорение в случае переносного поступательного движения равно нулю, поэтому

Т.к. в поступательном движении ускорения всех точек одинаковы и равны ускорению полюса, имеем .

Ускорение точки при движении по окружности удобно представить в виде суммы центростремительной и вращательной составляющих:

.

Следовательно

Направления составляющих ускорения показаны на рис.1.15 а.

Нормальная (центростремительная) составляющая относительного ускорения определяется формулой

Величина его равна Вектор направлен вдоль отрезка АВ к полюсу А (центром вращения вокруг является ).

Рис. 1. 15. Теорема о сложении ускорений (а) ее следствия (б)

Касательная (вращательная) составляющая относительного ускорения определяется формулой

.

Модуль этого ускорения находится через угловое ускорение . Вектор направлен перпендикулярно к АВ в сторону углового ускорения (в сторону угловой скорости, если движение ускоренное и в противоположную сторону вращения, если движение замедленное).

Величина полного относительного ускорения определяется по теореме Пифагора:

.

Вектор относительного ускорения любой точки плоской фигуры отклонён от прямой, соединяющей рассматриваемую точку с полюсом на угол , определяемый формулой



На рис.1.15 б показано, что этот угол одинаков для всех точек тела.

Следствие из теоремы об ускорениях.

Концы векторов ускорений точек прямолинейного отрезка на плоской фигуре лежат на одной прямой и делят её на части, пропорциональные расстояниям между точками.

Доказательство этого утверждения следует из рисунка:

.

Методы определения ускорений точек тела при плоском его движении идентичны соответствующим методам определения скоростей.

Мгновенный центр ускорений

В любой момент времени в плоскости движущейся фигуры существует одна единственная точка, ускорение которой равно нулю. Эта точка называется мгновенным центром ускорений (МЦУ).

Доказательство следует из способа определения положения этой точки. Примем за полюс точку А, предполагая известным её ускорение. Раскладываем движение плоской фигуры на поступательное и вращательное. Пользуясь теоремой сложения ускорений, записываем ускорение искомой точки и приравниваем его нулю.

Отсюда следует, что , т. е. относительное ускорение точки Q равно ускорению полюса А по величине и направлено в противоположную сторону. Это возможно только в том случае, если углы наклона относительного ускорения и ускорения полюса А к прямой, соединяющей точку Q, с полюсом А одинаковы.

, , .

Примеры нахождения МЦУ.

Рассмотрим способы нахождения положения МЦУ.

Пример №1: известны , , (рис.1.16 а).

Определяем угол . Откладываем угол в направлении углового ускорения (т. е. в сторону вращения при ускоренном вращении и против - при замедленном), от направления известного ускорения точки и строим луч. На построенном луче откладываем отрезок длиной AQ.

Рис. 1. 16. Примеры нахождения МЦУ: пример №1 (а), пример№2 (б)

Пример № 2. Известны ускорения двух точек А и В: и (рис.1.16 б).

Одну из точек с известным ускорением принимаем за полюс и определяем относительное ускорение другой точки путём геометрических построений. Измерением находим угол и под этим углом проводим лучи от известных ускорений. Точка пересечения этих лучей является МЦУ. Угол откладывается от векторов ускорений в ту же сторону, в какую идёт угол от вектора относительного ускорения к прямой ВА.

Следует отметить, что МЦУ и МЦС разные точки тела, причём ускорение МЦС не равно нулю и скорость МЦУ не равна нулю (рис 1.17).

Рис. 1. 17. Положение МЦС и МЦУ в случае качения катка без скольжения

В тех случаях, когда ускорения точек параллельны друг другу возможны следующие частныйслучаи нахождения МЦУ (рис.1.17)

Рис. 1. 18. Частные случаи нахождения МЦУ:
а) ускорения двух точек параллельны и равны; б) ускорения двух точек антипараллельны; в) ускорения двух точек параллельны, но не равны


СТАТИКА

ВВЕДЕНИЕ В СТАТИКУ

Основные понятия статики, область их применения

Статика - раздел механики, изучающий условия равновесия материальных тел и включающий в себя учение о силах.

Говоря о равновесии, надо помнить, что “всякий покой, всякое равновесие относительны, они имеют смысл только по отношению к той или иной определенной форме движения”. Например, тела, покоящиеся на Земле, движутся вместе с ней вокруг Солнца. Более точно и правильно следует говорить об относительном равновесии. Условия равновесия различны для твердых, жидких и газообразных, деформируемых тел.

Большинство инженерных сооружений можно считать малодеформируемыми или жесткими. Абстрагированием можно ввести понятие абсолютно твердого тела: расстояния, между точками которого не изменяются с течением времени.

В статике абсолютно твердого тела решатся две задачи:

· сложение сил и приведение системы сил к простейшему виду;

· определение условий равновесия.

Силы имеют различную физическую природу, часто неясную до конца и в настоящее время. Вслед за Ньютоном, будем понимать силу как количественную модель, меру взаимодействия материальных тел.

Модель силы по Ньютону определяется тремя главными характеристиками: величиной, направлением действия и точкой ее приложения. Опытным путем установлено, что введенная таким путем величина имеет векторные свойства. Более подробно они рассматриваются в аксиомах статики. В международной системе единиц СИ, используемой в соответствии с ГОСТом, единицей измерения силы является ньютон (Н). Изображение и обозначение сил показано на рис.2.1 а

Совокупность сил, действующих на какое-либо тело (или систему тел) называется системой сил.

Тело, не скрепленное с другими телами, которому можно сообщить движение в любом направлении, называется свободным.

Система сил, полностью заменяющая другую систему сил, действующую на свободное тело, не изменяя при этом состояния движения или покоя, называется эквивалентной.

Рис. 2. 1. Основные понятия о силах

Система сил, под действием которой тело может находиться в состоянии покоя, называется эквивалентной нулю или уравновешенной.

Одна сила, эквивалентная системе сил, называется ее равнодействующей. Равнодействующая существует не всегда, например, в случае изображенном на рисунке ее не существует.

Одна сила, равная по величине равнодействующей, но противоположно ей направленная, называется уравновешивающей для исходной системы сил (рис.2.1 б).

Силы, действующие между частицами одного тела, называются внутренними, а действующие со стороны других тел - внешними.

Аксиомы статики

Рис.40

Рис.39

Рис.38

Свойства плана скоростей.

а) Стороны треугольников на плане скоростей перпендику­лярны соответствующим прямым на плоскости тела.

Действительно, . Но на плане скоростей . Значит причём перпендикулярна АВ , по­этому и . Точно так же и .

б) Стороны плана скоростей пропорциональны соответствующим от­резкам прямых на плоскости тела.

Так как , то отсюда и следует, что стороны плана скоростей пропорциональны отрезкам прямых на плоскости тела.

Объединив оба свойства, можно сделать вывод, что план скоростей подобен соответствующей фигуре на теле и повёрнут относительно её на 90˚ по направлению вращения. Эти свойства плана скоростей позволяют определять скорости точек тела графическим способом.

Пример 10. На рисунке 39 в масштабе изображён механизм. Известна угловая скорость звена ОА .

Чтобы построить план ско­ростей должна быть известна скорость какой-нибудь одной точки и хотя бы направление вектора скорости другой. В на­шем примере можно определить скорость точки А : и направление её вектора .

Откладываем (рис. 40) из точки о в масштабе Известно направление вектора скорости ползуна В – горизонтальное. Проводим на плане скоростей из точки О прямую I по направлению скорости , на которой должна находиться точка b , определяющая скорость этой точки В . Так как стороны плана скоростей перпендикулярны соответствующим звеньям механизма, то из точки а проводим прямую перпендикулярно АВ до пересечения с прямой I . Точка пересечения определит точку b , а значит и скорость точки В : . По второму свойству плана скоростей его стороны подобны звеньям механизма. Точка С делит АВ пополам, значит и с должна делить аb пополам. Точка с определит на плане скоростей величину и направление скорости (если с соединить с точкой О ).

Скорость точки Е равна нулю, поэтому точка е на плане скоростей совпадает с точкой О .

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

В правой части этого равенства первое слагаемое есть ускорение полюса А , а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A . следовательно,

Значение , как ускорения точки вращающегося твердого тела, определяется как

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).составляющими и пред­ставить в виде

Лекция 3. Плоскопараллельное движение твердого тела. Определение скоростей и ускорений.

В данной лекции рассматриваются следующие вопросы:

1. Плоскопараллельное движение твердого тела.

2. Уравнения плоскопараллельного движения.

3. Разложение движения на поступательное и вращательное.

4. Определение скоростей точек плоской фигуры.

5. Теорема о проекциях скоростей двух точек тела.

6. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

7. Решение задач на определение скорости.

8. План скоростей.

9. Определение ускорений точек плоской фигуры.

10. Решение задач на ускорения.

11. Мгновенный центр ускорений.

Изучение данных вопросов необходимо в дальнейшем для динамики плоского движения твердого тела, динамики относительного движения материальной точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.

Разложение движения на поступательное и вращательное

Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П (рис. 28). Плоское движение совершают многие части механизмов и машин, например катящееся колесо на прямолинейном участке пути, шатун в кривошипно-ползунном механизме и др. Частным случаем плоскопараллельного движения является вращательное движение твердого тела вокруг неподвижной оси.

Рис.28 Рис.29

Рассмотрим сечение S тела какой-нибудь плоскости Оxy , параллельной плоскости П (рис.29). При плоскопараллельном движе­нии все точки тела, лежащие на прямой ММ ’, перпендикулярной течению S , т. е. плоскости П , движутся тождественно.

Отсюда заключаем, что для изучения движения всего тела дос­таточно изучить, как движется в плоскости Оху сечение S этого тела или некоторая плоская фигура S . Поэтому в дальнейшем вместо плоского движения тела будем рассматривать движение плоской фигуры S в ее плоскости, т.е. в плоскости Оху .

Положение фигуры S в плоскости Оху определяется положением какого-нибудь проведенного на этой фигуре отрезка АВ (рис. 28). В свою очередь положение отрезка АВ можно определить, зная координаты x A и y A точки А и угол , который отрезок АВ образует с осью х . Точку А , выбранную для определения положения фигуры S , будем в дальнейшем называть полюсом.

При движении фигуры величины x A и y A и будут изменяться. Чтобы знать закон движения, т. е. положение фигуры в плоскости Оху в любой момент времени, надо знать зависимости

Уравнения, определяющие закон происходящего движения, называются уравнениями движения плоской фигуры в ее плоскости. Они же являются уравнениями плоскопараллельного движения твер­дого тела.

Первые два из уравнений движения определяют то движение, которое фигура совершала бы при =const; это, очевидно, будет поступательное движение, при котором все точки фигуры движутся так же, как полюс А . Третье уравнение определяет движе­ние, которое фигура совершала бы при и , т.е. когда полюс А неподвижен; это будет вращение фи­гуры вокруг полюса А . Отсюда можно заключить, что в общем случае движение плоской фигуры в ее плоскости может рассматриваться как слагающееся из по­ступательного движения, при котором все точки фигуры движутся так же, как полюс А , и из вращательного движения вокруг этого полюса.

Основными кинематическими характеристиками рассматривае­мого движения являются скорость и ускорение поступательного движения, равные скорости и ускорению полюса , а также угловая скорость и угловое ускорение враща­тельного движения вокруг полюса.


Определение скоростей точек плоской фигуры

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюса А , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.30), где - радиус-вектор полюса А , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

Где – ускорение точки А , принятой за полюс;

– ускорение т. В во вращательном движении вокруг полюса А ;

– соответственно касательная и нормальная составляющие
(рис. 3.25). Причем

(3.45)

где a – угол наклона относительного ускорения к отрезку АВ .

В случаях, когда w и e известны, формула (3.44) непосредственно используется для определения ускорений точек плоской фигуры. Однако во многих случаях зависимость угловой скорости от времени неизвестно, поэтому и угловое ускорение неизвестно. Кроме того, линия действия вектора ускорения одной из точек плоской фигуры известно. В этих случаях задача решается проектированием выражения (3.44) на соответствующим образом выбранные оси. Третий подход к определению ускорений точек плоской фигуры основан на использовании мгновенного центра ускорений (МЦУ).

В каждый момент времени движения плоской фигуры в своей плоскости, если w и e не равны нулю одновременно, имеется единственная точка этой фигуры, ускорение которой равно нулю. Эту точку называют мгновенным центром ускорений. МЦУ лежит на прямой, проведенной под углом a к ускорению точки, выбранной в качестве полюса, на расстоянии от которого

(3.46)

При этом угол a надо отложить от ускорения полюса в направлении дуговой стрелки углового ускорения e (рис. 3.26). В различные моменты времени МЦУ лежит в разных точках плоской фигуры. В общем случае МЦУ не совпадает с МЦС. При определении ускорений точек плоской фигуры МЦУ используется в качестве полюса. Тогда по формуле (3.44)

так как и следовательно

(4.48)

Ускорение направлено под углом a к отрезку Bq , соединяющему точку В с МЦУ в сторону дуговой стрелки углового ускорения e (рис. 3.26). Для точки С аналогично.

(3.49)

Из формулы (3.48), (3.49) имеем

Таким образом, ускорение точек фигуры при плоском движении можно определить так же как при чистом её вращении вокруг МЦУ.

Определение МЦУ.

1 В общем случае, когда w и e известны и не равны нулю, для угла a имеем

МЦУ лежит на пересечении прямых линий, проведенных к ускорениям точек фигуры под одним и тем же углом a, причем угол a нужно откладывать от ускорений точек в направлении дуговой стрелки углового ускорения (рис. 3.26).

Рис. 3.26
Рис. 3.27
2 В случае w¹0, e = 0, и, следовательно, a = 0. МЦУ лежит в точке пересечения прямых линий, по которым направлены ускорения точек плоской фигуры (рис. 3.27)

3 В случае w = 0, e ¹ 0, МЦУ лежит в точке пересечения перпендикуляров, восстановленных в точках А , В , С к соответствующим векторам ускорений (рис. 3.28).

Рис. 3.28

Определение углового ускорения при плоском движении

1 Если известен угол поворота или угловая скорость в зависимости от времени, то угловое ускорение определяется по известной формуле

2 Если в указанной выше формуле , – расстояние от точки А плоской фигуры до МЦС, величина постоянная, то угловое ускорение определяется путем дифференцирования угловой скорости по времени

(3.52)

где – касательно ускорение точки А .

3 Иногда угловое ускорение удается найти путем проектирования соотношения типа (3.44) на соответствующим образом выбранные оси координат. При этом ускорение т. А , выбранной в качестве полюса, известно, известна также линия действия ускорения другой т.В фигуры. Из таким образом полученной системы уравнений определяется касательное ускорение Тогда e вычисляется по известной формуле .

Задача КЗ

Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна В или Е (рис. К3.0 – К3.7) или из стержней 1, 2, 3 и ползунов В и E (рис. К3.8, К3.9), соединенных друг с другом и с неподвижными опорами O 1 , О 2 шарнирами; точка D находится в середине стержня АВ. Длины стержней равны соответственно l 1 = 0,4 м, l 2 = 1,2 м,
l 3 = 1,4 м, l 4 = 0,6 м. Положение механизма определяется углами a, b, g, j, q. Значения этих углов и других заданных величин указаны в табл. К3а (для рис. 0 – 4) или в табл. К3б (для рис. 5 – 9); при этом в табл. К3а w 1 и w 2 – величины постоянные.



Рис. К3.0
Рис. К3.1

Рис. К3.2
Рис. К3.3

Рис. К3.5
Рис. К3.4

Рис. К3.6
Рис. К3.7

Рис. К3.8
Рис. К3.9

Определить величины, указанные в таблицах в столбцах «Найти». Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки (например, угол g на рис. 8 следует отложить от DB по ходу часовой стрелки, а на рис. 9 – против хода часовой стрелки и т.д.).

Построение чертежа начинать со стержня, направление которого определяется углом a; ползун с направляющими для большей наглядности изобразить так, как в примере К3 (см. рис. К3б).

Заданные угловую скорость и угловое ускорение считать направленными против часовой стрелки, а заданные скорость и ускорение a B – от точки В к b (на рис. 5 – 9).

Указания. Задача К3 – на исследование плоскопараллельного движения твердого тела. При ее решения для определения скоростей точек механизма и угловых скоростей его звеньев следует воспользоваться теоремой о проекциях скоростей двух точек тела и понятием о мгновенном центре скоростей, применяя эту теорему (или это понятие) к каждому звену механизма в отдельности.

При определении ускорений точек механизма исходить из векторного равенства где А – точка, ускорение которой или задано, или непосредственно определяется по условиям задачи (если точка А движется по дуге окружности, то ); В –точка, ускорение которой нужно определить (о случае, когда точка В тоже движется по дуге окружности, см. примечание в конце рассмотренного ниже примера К3).

Пример К3 .

Механизм (рис. К3а) состоит из стержней 1, 2, 3, 4 и ползуна В, соединенных друг с другом и с неподвижными опорами O 1 и О 2 шарнирами.

Дано: a = 60°, b = 150°, g = 90°, j = 30°, q = 30°, AD = DB, l 1 = 0,4 м, l 2 = 1,2м, l 3 = 1,4 м, w 1 = 2 с –1 , e 1 = 7 с –2 (направления w 1 и e 1 против хода часовой стрелки).

Определить: v B , v E , w 2 , a B , e 3 .

1 Строим положение механизма в соответствии с заданными углами
(рис. К3б, на этом рисунке изображаем все векторы скоростей).

Рис. К3б

2 Определяем v B . Точка В принадлежит стержню АВ. Чтобы найти v B , надо знать скорость какой-нибудь другой точки этого стержня и направление По данным задачи, учитывая направление w 1 можем определить численно

v A = w 1 ×l 1 = 0,8 м/с; (1)

Направление найдем, учтя, что точка В принадлежит одновременно ползуну, движущемуся вдоль направляющих поступательно. Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня АВ) па прямую, соединяющую эти точки (прямая АВ ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим

v B ×cos 30° = v A ×cos 60° и v B = 0,46 м/с (2)

3 Определяем Точка Е принадлежит стержню DE. Следовательно, по аналогии с предыдущим, чтобы определить надо сначала найти скорость точки D, принадлежащей одновременно стержню АВ. Для этого, зная строим мгновенный центр скоростей (МЦС) стержня АВ ; это точка С 3 , лежащая на пересечении перпендикуляров к восставленных из точек А и В (к перпендикулярен стержень 1). АВ вокруг МЦС С 3 . Вектор перпендикулярен отрезку C 3 D , соединяющему точки D и С 3 , и направлен в сторону поворота. Величину v D найдем из пропорции

Чтобы вычислить C 3 D и С 3 В, заметим, что DAC 3 B – прямоугольный, так как острые углы в нем равны 30° и 60°, и что С 3 В = AB×sin 30° = AB×0,5 = BD. Тогда DBC 3 D является равносторонним и С 3 В = C 3 D. В результате равенство (3) дает

v D = v B = 0,46 м/с; (4)

Так как точка Е принадлежит одновременно стержню O 2 E , вращающемуся вокруг O 2 ­ , то Тогда, восставляя из точек Е и D перпендикуляры к скоростям , построим МЦС C 2 стержня DE. По направлению вектора определяем направление поворота стержня DE вокруг центра С 2 . Вектор направлен в сторону поворота этого стержня. Из рис. К3б видно, что откуда С 2 E = С 2 D. Составив теперь пропорцию, найдем, что

V E = v D = 0,46 м/с. (5)

4 Определяем w 2 . Так как МЦС стержня 2 известен (точка С 2 ) и
C 2 D = l 2 /(2cos 30°) = 0,69 м, то

(6)

5 Определяем (рис. К3в, на котором изображаем все векторы ускорений). Точка В принадлежит стержню АВ. Чтобы найти , надо знать ускорение какой-нибудь другой точки стержня АВ и траекторию точки В. По данным задачи можем определить где численно

(7) (7)

Рис. К3в
Вектор направлен вдоль AO 1 , а – перпендикулярно АО 1: изображаем эти векторы на чертеже (см. рис. К3в). Так как точка В одновременно принадлежит ползуну, то вектор параллелен направляющим ползуна. Изображаем вектор на чертеже, полагая, что он направлен в ту же сторону, что и . Для определения воспользуемся равенством

Изображаем на чертеже векторы (вдоль ВА от В к А )и (в любую сторону перпендикулярно ВА) ; численно . Найдя w 3 с помощью построенного МЦС С 3 стержня 3, получим

Таким образом, у величин, входящих в равенство (8), неизвестны только числовые значения а В и их можно найти, спроектировав обе части равенства (8) на какие-нибудь две оси.

Чтобы определить а В, спроектируем обе части равенства (8) на направление ВА (ось х), перпендикулярное неизвестному вектору Тогда получим

Лучшие статьи по теме