Психология. Отношения. Личность. Общение
  • Главная
  • Психология 
  • Теорема о взаимности возможных работ. Начало возможных перемещений. Формула умножения криволинейных трапеций

Теорема о взаимности возможных работ. Начало возможных перемещений. Формула умножения криволинейных трапеций

Начало возможных перемещений, являясь общим принципом механики, имеет важнейшее значение для теории упругих систем. Применительно к ним этот принцип можно сформулировать следующим образом: если система находится в равновесии под действием приложенной нагрузки, то сумма работ внешних и внутренних сил на возможных бесконечно малых перемещениях системы равна нулю.

где - внешние силы;
- возможные перемещения этих сил;
- работа внутренних сил.

Заметим, что в процессе совершения системой возможного перемещения величина и направление внешних и внутренних сил остаются неизменными. Поэтому при вычислении работ следует брать на половину, а полную величину произведения соответствующих сил и перемещений.

Рассмотрим два состояния какой-либо системы, находящейся в равновесии (рис. 2.2.9). В состоянии система деформируется обобщенной силой(рис. 2.2.9, а), в состоянии- силой(рис. 2.2.9, б).

Работа сил состояния на перемещениях состояния, как и работа сил состоянияна перемещениях состояния, будет возможной.

(2.2.14)

Вычислим теперь возможную работу внутренних сил состояния на перемещениях, вызванных нагрузкой состояния. Для этого рассмотрим произвольный элемент стержня длиной
в обоих случаях. Для плоского изгиба действие удаленных частей на элемент выражается системой усилий,,
(рис. 2.2.10, а). Внутренние усилия имеют направления, противоположные внешним (показаны штриховыми линиями). На рис. 2.2.10, б показаны внешние усилия,,
, действующие на элемент
в состоянии. Определим деформации, вызванные этими усилиями.

Очевидно удлинение элемента
, вызванное силами

.

Работа внутренних осевых сил на этом возможном перемещении

. (2.2.15)

Взаимный угол поворота граней элемента, вызванный парами
,

.

Работа внутренних изгибающих моментов
на этом перемещении

. (2.2.16)

Аналогично определяем работу поперечных сил на перемещениях, вызванных силами

. (2.2.17)

Суммируя полученные работы, получаем возможную работу внутренних сил, приложенных к элементу
стержня, на перемещениях, вызванной другой, вполне произвольной нагрузкой, отмеченной индексом

Просуммировав элементарные работы в пределах стержня, получим полное значение возможной работы внутренних сил:

(2.2.19)

Применим начало возможных перемещений, суммируя работу внутренних и внешних сил на возможных перемещениях системы, и получим общее выражение начала возможных перемещений для плоской упругой стержневой системы:

(2.2.20)

Т. е., если упругая система находится в равновесии, то работа внешних и внутренних сил в состоянии на возможных перемещениях, вызванных другой, вполне произвольной нагрузкой, отмеченной индексом, равна нулю.

Теоремы о взаимности работ и перемещений

Запишем выражения начала возможных перемещений для балки, показанной на рис. 2.2.9, приняв для состояния в качестве возможных перемещения, вызванные состоянием, а для состояния- перемещения, вызванные состоянием.

(2.2.21)

(2.2.22)

Так как выражения работ внутренних сил одинаковы, то очевидно, что

(2.2.23)

Полученное выражение носит название теоремы о взаимности работ (теоремы Бетти). Она формулируется следующим образом: возможная работа внешних (или внутренних) сил состояния на перемещениях состоянияравна возможной работе внешних (или внутренних) сил состоянияна перемещениях состояния.

Применим теорему о взаимности работ к частному случаю нагружения, когда в обоих состояниях системы приложено по одной единичной обобщенной силе
и
.

Рис. 2.2.11

На основании теоремы о взаимности работ получаем равенство

, (2.2.24)

которое носит название теоремы о взаимности перемещений (теоремы Максвелла). Формулируется она так: перемещение точки приложения первой силы по ее направлению, вызванное действием второй единичной силы, равно перемещению точки приложения второй силы по ее направлению, вызванному действием первой единичной силы.

Теоремы о взаимности работ и перемещений существенно упрощают решение многих задач при определении перемещений.

Пользуясь теоремой о взаимности работ, определим прогиб
балки посредине пролета при действии на опоре момента
(рис. 2.2.12, а).

Используем второе состояние балки – действие в точке 2 сосредоточенной силы . Угол поворота опорного сечения
определим из условия закрепления балки в точке В:

Рис. 2.2.12

Согласно теореме о взаимности работ

,

Рассмотрим два состояния упругой системы, находящейся в равновесии. В каждом из этих состояний на систему действует некоторая статическая нагрузка (рис.4,а). Обозначим перемещения по направлениям сил F1 и F2 через, где индекс «i» показывает направление перемещения, а индекс «j» - вызвавшую его причину.

Обозначим работу нагрузки первого состояния (сила F1) на перемещениях первого состояния через А11, а работу силы F2 на вызванных ею перемещениях - А22:

Используя (1.9), работы А11 и А22 можно выразить через внутренние силовые факторы:

Рассмотрим случай статического нагружения той же системы (рис.5,а) в такой последовательности. Сначала к системе прикладывается статически возрастающая сила F1 (рис.23,б); когда процесс ее статического нарастания закончен, деформация системы и действующие в ней внутренние усилия становятся такими же, как и первом состоянии (рис.23,а). Работа силы F1 составит:

Затем на систему начинает действовать статически нарастающая сила F2 (рис.5,б). В результате этого система получает дополнительные деформации и в ней возникают дополнительные внутренние усилия, такие же, как и во втором состоянии (рис.5,а). В процессе нарастания силы F2 от нуля до ее конечного значения сила F1 , оставаясь неизменной, перемещается вниз на величину дополнительного прогиба и, следовательно, совершает дополнительную работу:

Сила F2 при этом совершает работу:

Полная работа А при последовательном нагружении системы силами F1, F2 равна:

С другой стороны, в соответствии с (1.4) полную работу можно определить в виде:

Приравнивая друг к другу выражения (1.11) и (1.12), получим:

А12=А21 (1.14)

Равенство (1.14) носит название теоремы о взаимности работ, или теоремы Бетти: работа сил первого состояния на перемещениях по их направлениям, вызванных силами второго состояния, равна работе сил второго состояния на перемещениях по их направлениям, вызванных силами первого состояния. Опуская промежуточные выкладки, выразим работу А12 через изгибающие моменты, продольные и поперечные силы, возникающие в первом и втором состояниях:

Каждое подинтегральное выражение в правой части этого равенства можно рассматривать как произведение внутреннего усилия, возникающего в сечении стержня от сил первого состояния, на деформацию элемента dz, вызванную силами второго состояния.

Теорема Максвелла - это теорема о взаимности работ для частного случая нагружения системы, когда F 1 =F 2 =1. Очевидно, что при этом δ 12 =δ 21 .

Перемещение точки первого состояния под действием единичной силы второго состояния равняется перемещению точки второго состояния под действием единичной силы первого состояния.

38. Формула для определения работы внутренних сил (с пояснением всех входя­щих в формулу величин).

Теперь определим возможную работу внутренних сил. Для этого рассмотрим два состояния системы:

1) действует сила P i и вызывает внутренние усилия M i , Q i , N i ;

2) действует сила P j , которая в пределах малого элемента dx вызывает возможные деформации

D Mj = dx, D Qj =m dx, D Nj = dx.

Внутренние усилия первого состояния на деформациях (возможных перемещениях) второго состояния совершат возможную работу

–dW ij =M i D Mj +Q i D Qj +N i D Nj = dx+m dx+ dx .

Если проинтегрировать это выражение по длине элемента l и учесть наличие в системе n стержней, получим формулу возможной работы внутренних сил:

–W ij =
dx .

EI – жесткость при изгибе

GA – Жесткость при сдвиге

Е – модуль упругости характер физ параметры

Е – модуль упругости характер геометрич параметры

G- модуль сдвига

A- площадь сечения

EA –продольная жесткость

39. Формула Мора для определения перемещений (с пояснением всех входящих в формулу величин).

Рассмотрим два состояния стержневой системы:

1) грузовое состояние (рис. 6.6 а), в котором действующая нагрузка вызывает внутренние усилия M P , Q P , N P ;

2) единичное состояние (рис. 6.6 б), в котором действующая единичная сила P=1 вызывает внутренние усилия .

Внутренние силы грузового состояния на деформациях единичного состояния , , совершают возможную работу

–V ij =
dx.

А единичная сила P=1 единичного состояния на перемещении грузового состояния D P совершает возможную работу

W ij =1×D P =D P .

По известному из теоретической механики принципу возможных перемещений в упругих системах эти работы должны быть равными, т.е. W ij = –V ij . Значит, должны быть равны и правые части этих выражений:

D P =
dx .

Эта формула называется формулой Мора и используется для определения перемещений стержневой системы от внешней нагрузки.

40. Порядок определения перемещений в С.О.С. с использованием формулы Мора.

N p , Q p , M p как функции координаты х произвольного сечения для всех участков стержневой системы от действия заданной нагрузки.

Приложить по направлению искомого перемещения соответствующую ему единичную нагрузку (единичную силу, если определяется линейное перемещение; сосредоточенный единичный момент, если определяется угловое перемещение).

Определить выражения для внутренних усилий как функции координаты х произвольного сечения для всех участков стержневой системы от действия единичной нагрузки.

Найденные выражения внутренних усилий в первом и втором состоянии подставляют в интеграл Мора и интегрируют по участкам в пределах всей стержневой системы.

41. Применение формулы Мора для определения перемещений в изгибаемых сис­темах (со всеми пояснениями).

В балках (рис. 6.7 а) возможны три случая:

− если > 8 , в формуле оставляется только член с моментами:

D P = ;

− если 5≤ ≤8 , учитываются и поперечные силы:

D P =
dx
;

2. В рамах (рис. 6.7 б) элементы в основном работают только на изгиб.Поэтому в формуле Мора учитываются только моменты.

В высоких рамах учитывается и продольная сила:

D P =
dx .

3. В арках (рис. 6.7 в) необходимо учитывать соотношение между основными размерами арки l и f :

1) если £ 5 (крутая арка), учитываются только моменты;

2) если >5 (пологая арка), учитываются моменты и продольные силы.

4. В фермах (рис. 6.7 г) возникают только продольные силы. Поэтому

D P = dx = = .

42. Правило Верещагина для вычисления интегралов Мора: суть и условия ис­пользования.

Правило Верещагина для вычисления интегралов Мора: суть и условия ис­пользования.

c- центр тяжести площади грузовой эпюры.

y c -ордината взята из единичной эпюры, расположенной под центром тяжести площади грузовой эпюры.

EI- жесткость при изгибе.

Для вычисления полного перемещения необходимо сложить произведения грузовой эпюры на ординату поединично всех простых участков системы.

В данной формуле приведены определенные перемещения от действий только изгибающего момента. Это справедливо для изгибающих систем, для которых основное влияние на перемещение точек оказывает величина изгибающего момента, а влияние поперечной и продольных сил незначительно,которыми на практике пренебрегают.

Лабораторная работа № 10

Цель работы – проверить опытным путем справедливость теоремы о взаимности перемещений и на ее основе построить упругую линию балки.

Основные сведения

Теорема о взаимности работ гласит, что работа первой силы на перемещении точки ее приложения под действием второй силы равна работе второй силы на перемещении точки ее приложения под действием первой силы, т.е.

F 1 у 12 = F 2 у 21 = W.(10.1)

Если силы равны, то теорема переходит в теорему о взаимности перемещений: перемещение первого сечения под действием силы, приложенной во втором сечении, равно перемещению второго сечения под действием той же силы, но приложенной в первом сечении.

у 12 = у 21 . (10.2)

Порядок выполнения и обработка результатов

Опыты проводятся на настольной установке СМ-4, представляющей собой двухопорную балку описанную в лабораторной работе № 9 .

Проверка теоремы о взаимности перемещений (рис. 10.1) выполняется следующим образом.

Рис. 10.1. Проверка теоремы о взаимности перемещений

В двух произвольных сечениях балки устанавливаются стрелочные индикаторы и гиревые подвесы (сечения 1 и 2 рис. 10.1, а). На индикаторе сечения 2 снимается начальный отсчет, балка нагружается в сечении 1 нагрузкой F и снимается отсчет индикатора, установленного в сечении 2 (см. рис. 10.1, б). Разность данного и начального отсчетов равна величине прогиба у 21 в сечении 2. Затем балка разгружается.

Данные по F и у 21 заносятся в журнал испытаний. Далее на индикаторе, установленном в сечении 1, снимается начальный отсчет, балка нагружается в сечении 2 той же нагрузкой F и по разности отсчетов индикатора 1 определяется величина прогиба у 12 (см. рис. 10.1, в).

Балка разгружается и данные по у 12 заносятся в журнал испытаний. Сопоставлением полученных данных по равенству (10.2) проверяется теорема о взаимности перемещений. Если равенство (10.2) не соблюдается, определяют процент погрешности

и делают выводы.

Используя теорему о взаимности перемещений, можно с помощью одного индикатора, закрепленного стационарно в сечении приложения нагрузки заданной расчетной схемы (рис. 10.2), определить экспериментально перемещения балки в любом сечении и построить упругую линию балки.

Рис. 10.2. Построение упругой линии балки

Индикатор линейных перемещений устанавливается в том сечении балки, в котором по расчетной схеме прикладывается заданная нагрузка. Один гиревой подвес размещается на консоли, второй – внутри пролета.

Определяются перемещения сечения, в котором установлен индикатор, при последовательном приложении заданной нагрузки F в расчетные точки 1 … 10 (см. рис. 10.2). Эта операция включает в себя установку гиревого подвеса в расчетную точку, снятие начального отсчета по индикатору, приложение заданной нагрузки F к гиревому подвесу, снятие отсчета индикатора и определение приращения отсчетов, равного определяемому перемещению. Для приложения нагрузки в сечениях, расположенных на консоли, используется второй гиревой подвес.

Согласно теореме о взаимности перемещений, эти перемещения будут равны перемещениям расчетных точек при приложении нагрузки F в сечении установки индикатора.

Полученные значения перемещений заносятся в журнал испытаний.

Для сравнения экспериментальных перемещений с теоретическими последние просчитываются для заданной

Работа первой силы на перемещении ее точки приложения, вызванном второй силой равняется работе второй силы на перемещении ее точки приложения, вызванном первой силой.

(Линейно-упругие системы всегда консервативны, если загружены консервативными силами, т.е. силами, имеющими потенциал).

В качестве модели системы выберем консольную балку. Перемещения будем обозначать - перемещение по направлению силы , вызванное силой .

Нагрузим систему вначале силой , а затем приложим силу . Работа сил, приложенных к системе запишется:

(Почему два первых члена имеют множитель , а последний нет?)

Затем первой приложим силу а второй - .

Т.к. система консервативна, а также потому, что начальные и конечные состояния в обоих случаях совпадают, то работы необходимо равны, откуда следует

Если положить , то получим частный случай теоремы Бетти – теорему о взаимности перемещений.

Перемещения, вызванные единичными силами, мы будем обозначать (смысл индексов прежний). Тогда

Потенциальная энергия деформации плоской

Стержневой системы.

Будем рассматривать плоскую систему, т.е. систему все стержни которой и все силы лежат в одной плоскости. В стержнях такой системы в общем случае могут возникать при внутренних силовых факторах:

Упругая система деформируясь накапливает при этом энергию (упругую энергию) называемую потенциальной энергией деформации .

а) Потенциальная энергия деформации при растяжении и сжатии.

Потенциальная энергия накопленная в малом элементе длиной dz будет равняться работе сил приложенных к этому элементу

Потенциальная энергия для стержня:

Замечание. и - необязательно постоянные величины.

б) Потенциальная энергия при изгибе.

Для стержня:

в) Поперечные силы вызывают сдвиги, и им соответствует по

тенциальная энергия сдвига. Однако, эта энергия в большинстве случаев невелика и мы не будем ее учитывать.

Замечание. В качестве рассматриваемых объектов у нас фигурировали прямые стержни, но полученные результаты применимы и криволинейным стержням малой кривизны, у которых радиус кривизны приблизительно в 5 раз и более превосходит высоту сечения.

Потенциальная энергия для стержневой системы может быть записана:

Здесь учтено то обстоятельство, что при растяжении и сжатии сечения не поворачиваются, следовательно, изгибающие моменты при этом работы не совершают, а при изгибе не меняется расстояние по оси между смежными сечениями и работа нормальных сил равна нулю. Т.е. потенциальную энергию изгиба и растяжения – сжатия можно вычислить независимо.


Знаки стимулирования означают, что потенциальная энергия вычисляется для всей системы.

Теорема Кастельяно.

Выражение (3) показывает, что потенциальная энергия деформации является однородной квадратичной функцией и , а те в свою очередь линейно зависят от сил, действующих на систему таким образом является квадратичной функцией сил.

Теорема. Частная производная от потенциальной энергии по силе равняется перемещению точки приложения этой силы по направлению последней.

Доказательство:

Пусть - потенциальная энергия, соответствующая силам системы Рассмотрим два случая.

1) Вначале приложены все силы а затем одна из них получает малое приращение тогда полная потенциальная энергия равна:

2) Вначале приложена сила а затем прикладываются силы В этом случае потенциальная энергия равна:

Т.к. начальное и конечное состояние в обоих случаях одинаково, а система консервативна, то потенциальные энергии надо приравнять

Отбрасывая малые второго порядка, получаем

Интеграл Мора.

Теорема Кастельяно дала нам возможность определять перемещения. Эту теорему используют для отыскания перемещений в пластинках, оболочках. Однако, вычисление потенциальной энергии громоздкая процедура и мы сейчас наметим более простой и наиболее общий путь определения перемещений в стержневых системах.

Пусть задана произвольная стержневая система и нам нужно определить в ней перемещение точки по направлению , вызванное всеми силами системы -

Лучшие статьи по теме